• Title/Summary/Keyword: Water Network

Search Result 2,024, Processing Time 0.034 seconds

Design of Satellite System for the Back-up System of Unmanned Control Plant

  • Chung, Kee-Heon;Yoon, Young-Hwan;Byun, Doo-Gyoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.4-170
    • /
    • 2001
  • Safety and confidence of the communications network is the main purpose for the unmanned control systems, in terms of appling a satellite communications network to the water treatment and supply plant communication system. Since the unmanned control systems were applied in the industrial site, the lack of confidence on the communications network has been presented continuously as a main problem for the unmanned and automation systems. Therefore, satellite communications network was presented as one of the methods to solve this problem, supporting the wire used telecommunication. In addition to the safety of a communications network, there is the retrenchment of expenditure. This dual communications network has ...

  • PDF

Skeletonization Methods for Complex Water Distribution Network (상수관망 시스템의 골격화 기법 평가)

  • Choi, Jeong Wook;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.845-855
    • /
    • 2015
  • Studies of optimizing pump operation in water distribution networks (WDN) are receiving spotlight in recent days. However, the water networks are quite complex including thousands of or even tens of thousands of nodes and pipes, thus simulation time is an issue. In some cases, implementing a computer model for pump operation decisions is restrictive due to intensive computation time. To that end, it is necessary to reduce the simulation time of water networks by simplifying the network layout. In this study, WDN skeletonization approaches were suggested and applied to a real water transmission network in South Korea. In skeletonizing the original network, it was constrained to match the water pressure and water age in the same junction locations to maintain the hydraulic and water quality characteristics in the skeletonized network. Using the skeletonization approaches suggested in this study, it is expected to reduce the simulation time of WDN and apply for developing a computer module of WDN real-time optimal operation.

A Study on the Coagulant Dosing Control Based on Neural Network and Streaming Current Detector for Water Treatment Plant (신경망과 유동전류계를 이용한 정수장 응집제 주입제어에 관한 연구)

  • Kim, Ki-Pyung;Kim, Yong-Yeol;Yoo, Jun;Kang, Yi-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.551-556
    • /
    • 2004
  • Coagulation process is one of the most important processes in water treatment procedures for stable and economical operation, and coagulant dosing of this process for most plants is generally determined by the jar test. However, this method does not only take a long time to analyze and get the result but also has difficulties in applying to automatic control. This paper shows the feasibility of applying neural network to control the coagulant dosing automatically in water treatment plant. To be specific, the predicted results of the neural network model is shown to be similar to that of jar test. The input variables for learning the neural network are turbidity, water temperature, pH, and alkalinity. Combining the neural network and SCD(Streaming Current Detector) for feedforward and feedback control of injecting coagulant, a rapid change of the raw water quality can be accommodated.

Relationship between the Flow data on the Unit Watersheds and on the Stream Flow Monitoring Network (수질오염총량관리 단위유역 유량자료와 하천유량 측정망 자료의 연계성 분석)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.55-65
    • /
    • 2013
  • It is very difficult to apply stream flow data directly to the management of Total Maximum Daily Loads because there are some differences between the unit watershed and the stream flow monitoring network in their characteristics such as monitoring locations and its intervals. Flow duration curve can be developed by linking the daily flow data of stream monitoring network to 8 day interval flow data of the unit watershed. This study investigated the current operating conditions of the stream flow monitoring network and the flow relationships between the unit watershed and the stream flow monitoring network. Criteria such as missing and zero value data, and correlation coefficients were applied to select the stream flow reference sites. The reference sites were selected in 112 areas out of 142 unit watersheds in 4 river basins, where the stream flow observations were carried out in relatively normal operating conditions. These reference sites could be utilized in various ways such as flow variation analysis, flow duration curve development and so on for the management of Total Maximum Daily Loads.

Water Recources Evaluation using Network Optimization Model (Network Optimization Model을 이용한 수자원 평가)

  • Lee, Gwang-Man;Lee, Jae-Eung;Sim, Sang-Jun;Go, Seok-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • South-eastern part of Kyungbuk Province is suffering from lack of suitable water development sources due to geographic condition and insufficient water sources condition. In order to find an appropriate solution, extensive studies are carried out such as investigation of new dam sites, regional water supply system, modification of existing water supply system, rehabilitation of old water resources structures and development of off-stream reservoirs. The network optimization model is applied for evaluation of the newly suggested water development alternatives. The results show that if water supply system is constructed until 2011, the reliability of water supply to Pohang and Kyungju region will be more than 95% and the network optimization model can be used to analyse the management of water resources system considering water rights or priority orders.

  • PDF

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

Study on the Chlorine-Resistant Bacteria Isolated from Water Pipe Network (상수도관망에서 분리한 잔류염소 내성균에 관한 연구)

  • Hyun, Jae-Yeoul;Yoon, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • The free residual chlorine of tap water samples, collected from 266 faucets on the water pipe network in Daegu City, was between 0.1 and 0.79 mg/L. On microorganic tests, general bacteria and the coliform goup were not detected and thus the tap water was turned out to be fit to drink. In particular, samples of which free residual chlorine was 0.1 mg/L and over were cultured in R2A agar media at $25^{\circ}C$ for 7 days, and as a result heterotrophic bacteria were detected in 65.9% of samples; (1). The closer tap water got to the faucet from the stilling basin, the lower residual chlorine concentration became but the more the bacterial count became. And, more bacteria were detected in the R2A agar medium than in the PCA medium. (2). In the case of separated strains, most colonies were reddish or yellowish. 16S rRNA sequence was identified as Methylobacterium sp. and Williamsia sp., and yellow strain was identified as Sphingomonas sp., Sphingobium sp., Novosphingobium sp., Blastomonas sp., Rhodococcus sp. and Microbacterium sp. White strain was identified as Staphylococcus sp. (3). Sterilized tap water in polyethylene bottles was inoculated with separated strain and was left as it was for 2 months. As a result, bio-film was observed in tap water inoculated with Methylobacterium sp. and Sphingomonas sp. It was found that heterotrophic bacteria increased when free residual chlorine was removed from tap water in the water pipe network. Thus, there is a need to determine a base value for heterotrophic bacteria in order to check the cleanliness of tap water in the water pipe network.

A STUDY OF SIMULATION AND CONTROL OF PAC COSING PROCESS IN WATER PURIFICATION SYSTEM

  • Nahm, Euisuck;Lee, Subum;Woo, Kwangbang;Han, Taehan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.75-78
    • /
    • 1995
  • In this paper it is concerned to develop control method using jar-test results in order to predict the optimum dosage of coaglant, PAC(PoliAluminum Chloride). Considering the relations with the reactions with the reaction of coagulation and flocculation, the five independent variables ( e, g, turbidity of raw water, water turbidity in flocculators, temperature, pH, and alkalynity) are selected out of parameters and they are put into calculation to develop a neural network model for PAC dosing process in water purification system. This model is utilized to predict optimum dosage of PAC. That is, the optimum dosage of PAC is searched in neural network model for PAC dosing process to minimize the water turbidity in flocculators. This searching is implemented by means of expert heuristics. The efficacy of the proposed contorl schemem and feasibility of acquired neural network model for PAC dosing contorl in water purification system is evaluated by means of computer simulation.

  • PDF

Development of Extraction Technique for Irrigated Area and Canal Network Using High Resolution Images (고해상도 영상을 이용한 농업용수 수혜면적 및 용배수로 추출 기법 개발)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Jeon, Min-Gi;Lee, Sang-Il;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.23-32
    • /
    • 2021
  • For agricultural water management, it is essential to establish the digital infrastructure data such as agricultural watershed, irrigated area and canal network in rural areas. Approximately 70,000 irrigation facilities in agricultural watershed, including reservoirs, pumping and draining stations, weirs, and tube wells have been installed in South Korea to enable the efficient management of agricultural water. The total length of irrigation and drainage canal network, important components of agricultural water supply, is 184,000 km. Major problem faced by irrigation facilities management is that these facilities are spread over an irrigated area at a low density and are difficult to access. In addition, the management of irrigation facilities suffers from missing or errors of spatial information and acquisition of limited range of data through direct survey. Therefore, it is necessary to establish and redefine accurate identification of irrigated areas and canal network using up-to-date high resolution images. In this study, previous existing data such as RIMS (Rural Infrastructure Management System), smart farm map, and land cover map were used to redefine irrigated area and canal network based on appropriate image data using satellite imagery, aerial imagery, and drone imagery. The results of the building the digital infrastructure in rural areas are expected to be utilized for efficient water allocation and planning, such as identifying areas of water shortage and monitoring spatiotemporal distribution of water supply by irrigated areas and irrigation canal network.