• Title/Summary/Keyword: Water Level Monitoring

Search Result 647, Processing Time 0.021 seconds

A Non-parametric Analysis of the Tam-Jin River : Data Homogeneity between Monitoring Stations (탐진강 수질측정 지점 간 동질성 검정을 위한 비모수적 자료 분석)

  • Kim, Mi-Ah;Lee, Su-Woong;Lee, Jae-Kwan;Lee, Jung-Sub
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.651-658
    • /
    • 2005
  • The Non-parametric Analysis is powerful in data test especially for the non- normality water quality data. The data at three monitoring stations of the Tam-Jin River were evaluated for their normality using Skewness, Q-Q plot and Shapiro-Willks tests. Various constituent of water quality data including temperature, pH, DO, SS, BOD, COD, TN and TP in the period of January 1994 to December 2004 were used as dataset. Shapiro-Willks normality test was carried out for a test 5% significance level. Most water quality data except DO at monitoring stations 1 and 2 showed that data does not normally distributed. It is indicating that non-parametric method must be used for a water quality data. Therefore, a homogeneity was conducted by Mann-Whitney U test (p<0.05). Two stations were paired in three pairs of such stations. Differences between stations 1, 2 and stations 1, 3 for pH, BOD, COD, TN and TP were meaningful, but Tam-Jin 2 and 3 stations did not meaningful. In addition, a narrow gap of the water quality ranges is not a difference. Categories in which all three pairs of stations (1 and 2, 2 and 3, 1 and 3) in the Tam-Jin River showed difference in water quality were analyzed on TN and TP. The results of in this research suggest a right analysis in the homogeneity test of water quality data and a reasonable management of pollutant sources.

Spatial and seasonal variations of organic carbon level in four major rivers in Korea

  • Lee, Jaewoong;Shin, Kisik;Park, Changhee;Lee, Seunghyun;Jin, Dal Rae;Kim, Yongseok;Yu, Soonju
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.84-90
    • /
    • 2016
  • Regionally the lowest average concentration of TOC was observed with 0.66 mg/L in Nakdong river, while the highest concentration of TOC was observed with 0.91 mg/L in Yeongsan river. The average concentration of TOC for national water quality monitoring site showed that the lowest average concentration of TOC was 1.58 mg/L in Han river, while the highest concentration of TOC was 3.37 mg/L in Yeongsan river. Seasonally, the average concentration of TOC at six upstream sites showed 0.77 mg/L and 0.56 mg/L, 0.69 mg/L and 0.63 mg/L, 0.80 mg/L and 0.73 mg/L, and 1.21 mg/L and 0.68 mg/L between wet season and dry season in Han river, Nakdong river, Gem river and Yeongsan river, respectively. For the national water quality site, the average concentration of TOC between wet season and dry season was 1.70 mg/L and 1.45 mg/L in Han river, 2.01 mg/L and 1.75 mg/L in Nakdong river, 2.01 mg/L and 1.60 mg/L in Gem river, and 3.75 mg/L and 3.00 mg/L in Yeongsan river. The distribution of TOC in upstream and national water quality monitoring sites on four major rivers have been influenced by seasonal and regional characteristics in Korea.

Tunnel Inspection and Monitoring System by Wireless Sensor Network (무선센서네트워크를 이용한 터널 모니터링 시스템)

  • Kim Hyung-Woo;Han Jin-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.91-94
    • /
    • 2006
  • In this paper, we deployed the tunnel inspection and monitoring system by wireless sensor network. It is shown that the wireless sensor network which is composed of sensor, wireless communication module, and gateway system can be applied to tunnel monitoring system. Sensors included herein are acceleration transducers, fire-alarm sensors, water-level sensors, and magnetic contact sensors. It is also found that the wireless sensor network can deliver sensing data reliably by ad-hoc networking technology. The gateway system that can send the sensing data to server by CDMA (code division multiple access) is developed. Finally, monitoring system is constructed by web service technology, and it is observed that this system can monitor the present state of tunnel without difficulties. Furthermore, the above system provides an alternative to inspect and monitor the tunnel efficiently where the conventional wired system cannot be applied.

  • PDF

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

Rural Groundwater Monitoring Network in Korea (농어촌지하수 관측망)

  • Lee, Byung Sun;Kim, Young In;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin Ho;Woo, Dong Kwang;Seol, Min Ku;Park, Ki Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Rural groundwater monitoring network has been managed by Korea Rural Community Corporation (KRC) since 1998. The network consists of two kinds of subnetworks; rural groundwater management network (RGMN) and seawater intrusion monitoring network (SIMN). RGMN has been operated to promote a sound and sustainable development of rural groundwater within the concerned area for groundwater quality and quantity. SIMN has been operated to protect the crops against hazards by the saline water in coastal areas in which the shortage of irrigation water become a main problem for agriculture. Currently, a total of 283 monitoring wells has been installed; 147 wells in 79 municipalities for RGMN and 136 wells in 52 ones for SIMN, respectively. Two subnetworks commonly monitor three hydrophysical properties (groundwater level, temperature, and electric conductivity) every hour. Monitored data are automatically transferred to the management center located in KRC. Data are opened to the public throughout website named to be the Rural Groundwater Net (www.groundwater.or.kr). Annual reports involving well logging and hydrochemical data of RGMN and SIMN have been published and distributed to the rural water management office of each municipalities. In addition, anyone who concerns about RGMN an SIMN can freely download these reports throughout the Rural Groundwater Net as well.

Estimating Groundwater Recharge using the Water-Table Fluctuation Method: Effect of Stream-aquifer Interactions (지하수위 변동법에 의한 함양량 산정: 하천-대수층 상호작용의 영향)

  • Koo, Min-Ho;Kim, Tae-Keun;Kim, Sung-Soo;Chung, Sung-Rae;Kang, In-Oak;Lee, Chan-Jin;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.65-76
    • /
    • 2013
  • The water-table fluctuation (WTF) method has been often used for estimating groundwater recharge by analysis of waterlevel measurements in observation wells. An important assumption inherent in the method is that the water level rise is solely caused by precipitation recharge. For the observation wells located near a stream, however, the water-level can be highly affected by the stream level fluctuations as well as precipitation recharge. Therefore, in applying the WTF method, there should be consideration regarding the effect of stream-aquifer interactions. Analysis of water-level hydrographs from the National Groundwater Monitoring Wells of Korea showed that they could be classified into three different types depending on their responses to either precipitation recharge or stream level fluctuations. A simple groundwater flow model was used to analyze the errors of the WTF method, which were associated with stream-aquifer interactions. Not surprisingly, the model showed that the WTF method could greatly overestimate recharge, when it was used for the observation wells of which the water-level was affected by streams. Therefore, in Korea, where most groundwater hydrographs are acquired from wells nearby a stream, more caution is demanded in applying the WTF method.

Digital power range neutron monitoring system

  • Endo, Yorimasa;Itoh,Toshiaki;Tai, Ichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.804-809
    • /
    • 1988
  • PRNM(Power Range Neutron Monitoring) of BWR (Boiling Water Reactor) is a system that processes signals from about two hundred LPRM (Local Power Range Monitor) sensors in the nuclear reactor and this system monitors the neutron flux level during the plant operating region. Development has been made by employing a special technique for multiplexing neutron sensor signals and the recent advanced microelectronics technology. It is applicable to the total plant digital control system for a nuclear power plant.

  • PDF

A study of statistical analysis method of monitoring data for freshwater lake water quality management (담수호 수질관리를 위한 측정자료의 통계적 분석방법 연구)

  • Chegal, Sundong;Kim, Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • As using public monitoring data, analysing a trends of water quality change, establishing a criteria to determine abnormal status and constructing a regression model that can predict Chlorophyll-a, an indicator of eutrophication, was studied. Accordingly, the three freshwater lakes were selected, approximately 20 years of water quality monitoring data were analyzed for periodic changes in water quality each year using regression analysis, and a method for determining abnormalities was presented by the standard deviation at confidence level 95%. By calculating the temporal change rate of Chlorophyll-a from irregular observed data, analyzing correlations between the rate and other water quality items, and constructing regression models, a method to predict changes in Chlorophyll-a was presented. The results of this study are expected to contribute to freshwater lake water quality management as an approximate water quality prediction method using the statistical model.

Monitoring of Micro Noxious Chemicals Caused by Fiber and Chemistry Industrial Wastewater on the Nakdong River Water System (낙동강 수계의 섬유 및 화학 산업폐수로부터 발생하는 미량유해화학물질의 모니터링)

  • Kim Man-Il;Kang Mee-A
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.145-152
    • /
    • 2006
  • Industry development caused numerical and quantitative increase of noxious chemical substances that contain risk assessment in water resources. For use of efficient water resources a pre-treatment of contaminant source which is flowed in water resources is recognized in essential process. Therefore, the discharged water quality from discharged company began to control contaminant by total amount of pollutant in domestic. However, to estimate closely chemical substances it is not proved up to now, monitoring is very important. This study achieved a monitoring of micro noxious chemical substance by fiber and chemistry industrial wastewater inflow to examine risk assessment of the water system of Nakdong river. Chloroform was measured highest among volatile organic compounds (VOCs) that the results of water quality of influent and effluent are detected from 7 companies of study area. The other side, because measured value of detected chloroform is indefinite detection level in the same company, it is difficulty in management of water quality. However it may not be much effects of the water system of Nakdong river because these company's effluent is high treatment efficiency of chloroform (more than 88%) in sewage treatment plant. On the other hand, in the investigated results for the European Union specified priority substance that is detected to relationship influent and effluent from fiber/chemistry associated industries, these substances were not detected and domestic data was hardly referred. Therefore, data construction of continuous monitoring about this water quality may have to be achieved certainly to utilize as country policy.

Analysis of Groundwater Level Changes Due to Earthquake in Jeju Island (For the Indonesian Earthquake with Magnitude 7.7 in 2010) (지진에 의한 제주도 지하수위 변동 분석 (2010년 인도네시아 규모 7.7 지진))

  • Lee, Soo-Hyoung;Hamm, Se-Yeong;Ha, Kyoo-Chul;Kim, Yong-Cheol;Cheong, Beom-Keun;Ko, Kyung-Seok;Koh, Gi-Won;Kim, Gee-Pyo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.41-51
    • /
    • 2011
  • This study was conducted to investigate the relationship between groundwater level change and a large earthquake using the data of groundwater and seawater intrusion monitoring wells in Jeju Island. Groundwater level data from 13 observation wells were analyzed with a large earthquake. The Earthquake occurred at Sumatra, Indonesia (Mw = 7.7) on 13 June 2010, and groundwater level anomalies which seems to be related to the Earthquake were found in 6 monitoring wells. They lasted for approximately 16~27 minutes and the range of groundwater level fluctuations were about 1.4~2.4 cm. Coefficient of determination values for relationship between groundwater level change and transmissivity, and response time were calculated to be $R^2$ = 0.76 and $R^2$ = 0.96, respectively. The study also indicates that the high transmissivity of aquifer showed the high goundwater level changes and longer response time.