• Title/Summary/Keyword: Water Infiltration

Search Result 910, Processing Time 0.026 seconds

Application Amount of Anaerobic Digestion Waste Water from Methane Fermentation of Pig Manure on Rice (벼에 대한 돈분뇨 혐기성 소화액비의 시용적량 구명)

  • Lim, Dong-Kyu;Park, Woo-Kyun;Kwon, Soon-Ik;Nam, Jae-Jak;Lee, Sang-Beom
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.248-254
    • /
    • 2002
  • This study was carried out to evaluate the proper application amount of anaerobic digestion waste water and the environmental influence on rice. The waste water collected after methane fermentation process of pig manure was used as a liquid manure. Liquid manure 100%+chemical fertilizer 30%(LM 100%+CF 30) treatment was the most favorable at all growth stages of rice. The LM 100%+CF 30% treatment was applied to 100% amount of liquid manure which was correspond to the same amount of nitrogen for the standard application amount on rice, with adding 30% amount of chemical fertilizer(urea) at tillering stage. The yields of rice in the treatments of 100%(LM 100%) and 150% amount(LM 150%) of liquid manure were similar or a little higher than NPK treatment but LM 100%+CF 30% treatment was less than the NPK treatment due to the increase of straw weight and plant lodging. In periodic changes of the $NH_4-N$ and $NO_3-N$ contents, the LM 70%+CF 30% treatment in paddy soil was the highest in all treatments. The NPK and the LM 100% treatments in irrigation water quality were higher than other treatments. In infiltration water quality, $NH_4-N$ content was leached out much in the LM 150% treatment and $NO_3-N$ content was in the LM 100%+CF 30% treatment. The proper application amount of anaerobic digestion waste water as a liquid manure must be to analyse the nitrogen content of the waste water and to apply the same amount of nitrogen for the standard application amount on rice.

Application Level of Anaerobic Digestion Waste Water from Methane Fermentation of Pig Manure on Rice (벼에 대한 돈분뇨 혐기성 소화액비의 시용기준 연구)

  • Lim, Dong-Kyu;Park, Woo-Kyun;Kwon, Soon-Ik;Nam, Jae-Jak;Park, Baeg-Kyun;Kim, Seung-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2002
  • This study was conducted to evaluate the effect of the proper application level of anaerobic digestion waste water on rice. The waste water was from methane fermentation of pig manure to use as a liquid manure. The mixture treatment of 70% liquid manure and 30% chemical fertilizer (LM 70%+CF 30%) and 100% liquid manure (LM 100%) treatment were higher number of tiller than other treatments at the both tillering and heading stages of rice. The yields of LM 70%+CF 30% and LM 100% treatments were a little higher than that of NPK treatment, but the mixture treatment of 50% liquid manure and 50% chemical fertilizer (LM 50%+CF 50%) was a little lower yield than NPK treatment. The periodic changes of the $NH_4-N$ and $NO_3-N$ contents of the NPK and the LM 50%+CF 50% treatments in paddy soil were a little higher than those of other treatments at the early stage of rice. The $NH_4-N$ contents of NPK and the LM 50%+CF 50% treatments in irrigation water quality were higher than those of other treatments, however there was no difference in $NO_3-N$ content among the treatments. The $NH_4-N$ and $NO_3-N$ contents of non fertilizer treatment in infiltration water quality were leached a little higher than those of other treatments. It may be due to poor growth of rice following to reduce the nutrient uptake by rice and to increase relatively the nutrient leaching to the ground water. The proper application level of anaerobic digestion waste water as a liquid manure could be suggested to apply LM 70%+CF 30%. All treatments were the same amount of nitrogen content for the standard application amount on rice.

Experimental Study on the Hysteresis of Suction Stress in Unsaturated Sand (불포화 모래의 흡입응력 이력현상에 대한 실험적 연구)

  • Song, Young-Suk;Choi, Jin-Su;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.145-155
    • /
    • 2012
  • The matric suction and volumetric water content of Jumunin standard sand with a relative density of 60% were measured using an Automated Soil-Water Characteristic Curve (SWCC) apparatus during both drying and wetting processes. The test time for the drying process was longer than that for the wetting process, because the flow of water is likely to be protected by air trapped in voids within the soils during the drying process. Based on the matric suction and volumetric water content, the SWCC was estimated using the model proposed by van Genuchten (1980). For the drying process, the unsaturated fitting parameters ${\alpha}$, n, and m were 0.399, 8.586, and 0.884, respectively; for the wetting process, the values were 0.548, 5.625, and 8.220, respectively. The hysteresis phenomenon occurred in the SWCCs, which means the SWCC of the drying process is not matched with the SWCC of the wetting process. Using these unsaturated parameters, we estimated the Suction Stress Characteristic Curve (SSCC), based on the relationship between suction stress and the effective degree of saturation. The suction stress showed a rapid decrease when the matric suction exceeds the Air Entry Value (AEV). Therefore, the effective stress of unsaturated soils is different from that of saturated soils when the matric suction exceeds the AEV. The suction stress of the drying process exceeds that of the wetting process for a given effective degree of saturation. The hysteresis phenomenon was also recognized in SSCCs. The hysteresis phenomenon of SSCCs arises from that of SWCCs, which is induced by the ink bottle effect and the contact angle effect. In the case of a sandy slope, the suction stress is positive and acts to enhance the slope stability as the water infiltrates the ground, but is negative when the suction stress exceeds the AEV. The results obtained for the wetting process should be applied in analyses of slope stability, because the process of water infiltration into ground is similar to the wetting process.

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

An attempt at soil profiling on a river embankment using geophysical data (물리탐사 자료를 이용한 강둑 토양 종단면도 작성)

  • Takahashi, Toru;Yamamoto, Tsuyoshi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The internal structure of a river embankment must be delineated as part of investigations to evaluate its safety. Geophysical methods can be most effective means for that purpose, if they are used together with geotechnical methods such as the cone penetration test (CPT) and drilling. Since the dyke body and subsoil in general consist of material with a wide range of grain size, the properties and stratification of the soil must be accurately estimated to predict the mechanical stability and water infiltration in the river embankment. The strength and water content of the levee soil are also parameters required for such prediction. These parameters are usually estimated from CPT data, drilled core samples and laboratory tests. In this study we attempt to utilise geophysical data to estimate these parameters more effectively for very long river embankments. S-wave velocity and resistivity of the levee soils obtained with geophysical surveys are used to classify the soils. The classification is based on a physical soil model, called the unconsolidated sand model. Using this model, a soil profile along the river embankment is constructed from S-wave velocity and resistivity profiles. The soil profile thus obtained has been verified by geotechnical logs, which proves its usefulness for investigation of a river embankment.

Estimation and assessment of natural drought index using principal component analysis (주성분 분석을 활용한 자연가뭄지수 산정 및 평가)

  • Kim, Seon-Ho;Lee, Moon-Hwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.565-577
    • /
    • 2016
  • The objective of this study is to propose a method for computing the Natural Drought Index (NDI) that does not consider man-made drought facilities. Principal Component Analysis (PCA) was used to estimate the NDI. Three monthly moving cumulative runoff, soil moisture and precipitation were selected as input data of the NDI during 1977~2012. Observed precipitation data was collected from KMA ASOS (Korea Meteorological Association Automatic Synoptic Observation System), while model-driven runoff and soil moisture from Variable Infiltration Capacity Model (VIC Model) were used. Time series analysis, drought characteristic analysis and spatial analysis were used to assess the utilization of NDI and compare with existing SPI, SRI and SSI. The NDI precisely reflected onset and termination of past drought events with mean absolute error of 0.85 in time series analysis. It explained well duration and inter-arrival time with 1.3 and 1.0 respectively in drought characteristic analysis. Also, the NDI reflected regional drought condition well in spatial analysis. The accuracy rank of drought onset, termination, duration and inter-arrival time was calculated by using NDI, SPI, SRI and SSI. The result showed that NDI is more precise than the others. The NDI overcomes the limitation of univariate drought indices and can be useful for drought analysis as representative measure of different types of drought such as meteorological, hydrological and agricultural droughts.

Protective effects of Commiphora myrrha on acute pancreatitis (몰약(沒藥) 물 추출물의 급성 췌장염 보호 효과)

  • Kim, Dong-Goo;Bae, Gi-Sang;Choi, Sun Bok;Jo, Il-Joo;Shin, Joon-Yeon;Lee, Sung-Kon;Kim, Myoung-Jin;Kim, Min-Jun;Choo, Gab-Chul;Song, Ho-Joon;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.15-20
    • /
    • 2014
  • Objectives : Commiphora myrrha (CM) has been used in traditional medicine for treating disease such as obesity, hyperlipidemia, atherosclerosis, diabetes and osteoarthritis. However, the protective effects of CM on acute pancreatitis (AP) has not been reported. Thus, the aim of this study was to evaluate the protective effects of CM water extract on cerulein-induced AP. Methods : AP was induced in mice via intraperitoneal injection of supramaximal concentrations of the stable cholecystokinin analogue cerulein ($50{\mu}g/kg$) every hour for 6 times. Water extract of CM (0.1, 0.2, or 0.5 g/kg) was administrated intraperitoneally 1 h prior to the first injection of cerulein. The mice were killed at 6 h after the final cerulein injection. Pancreas was rapidly removed for morphologic and histochemical examination, myeloperoxidase (MPO) assay. Blood samples were taken to determine serum amylase and lipase activities. Results : Administration of CM significantly inhibited pancreatic weight/body weight ratio, pancreas histological injury. And CM administration inhibited the serum digestive enzyme elevation such as amylase and lipase on cerulein-induced pancreatitis. In addition, Pancreas MPO activity which indicates neutrophil infiltration was inhibited by CM extract on cerulein-induced pancreatitis. Conclusions : In conclusion, our results could suggest that pre-treatment of CM reduces the severity of cerulein-induced AP. Therefore, CM could be used as a protective agent against AP. Also, this study could give a clinical basis that CM could be a drug or agent to prevent AP.

Construction of Three Dimensional Soil Cadmium Pollution Map Using Geotechnical Information DB System (국토지반정보시스템을 이용한 3차원 토양오염지도 구축)

  • Hwang, Dae Young;Kang, In Joon;Jang, Yong Gu;Kim, Soo Kyum
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.13-19
    • /
    • 2016
  • This study presented the build-up of three-dimensional soil pollution map for precise analysis. To do this, survey on the existing pollutant region on Dongnae-gu, Busan that is the study subject, showed that it tended to produce 0.72 clusters. So, this study suggested to investigate center of $1km{\times}1km $ grid and, as the results of comparing the pollution map that input pollution figure values based on the actually investigation point showed precise results. And, it divided the standard of pollution into 5 levels in surface and underground space and the map was built up using IDW interpolation against the amount of polluted substance. The pollution of ground surface, flow of polluted substance, coefficient of permeability and ground water level that are 504 geotechnical informations were selected as the influential parameters in pollution analysis of underground space, and it calculated that to 0~20 points by dividing the characteristics. It enables the build-up of pollution map of ground surface-underground with depth that considers the characteristics of soil layers and it is considered that it is possible to analyze the general infiltration. And, it was considered that it enables more accurate forecast about influential analysis per depth and pollution of underground water.

A Study of the Management of Groundwater Reservoir by Numerical Three Dimensional Flow Model (3차원 흐름모델을 이용한 지하저수지의 관리에 대한 연구)

  • 신방웅;김희성
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.289-300
    • /
    • 1995
  • At the initial stage of the underground reservoir design one should thoroughly consider surface and subsurface hydrology, hydrogeologic characteristics of aquifer system, and the function of cut - off wall because it is linked to the effective management. In this study, three dimensional finite difference model was applied to analyse the function of Ian underground reservoir at Kyungbuk Province. The steady and unsteady state conditions after construction of the underground dam were simulated through the model, and from these results the groundwater budget and the safe yield were determined. The model simulation indicates the infiltration of irrigation water to be one of the major factors of seasonal fluctuation of groundwater level. The recharge rates of irrigation water were estimated as 4.3mm/d during May and June, and 1.7mm/d during July and Agust. Groundwater recharge from the watershed area estimated to about $0.04m^3/s$, almost consistent through the year. In 1984, groundwater discharge through the transverse section of the dam was $0.002m^3/s$ and the optimum yield for two momths(July and Aguest)was $254000m^3$, however, the discharge became $0.013m^3/s$ in1993, implying the failure of cut -off function. without appropaiate of the cut - off wall, optiumum yield during the irrigaton period would be $93, 000m^3$.

  • PDF