• Title/Summary/Keyword: Water Fleas

Search Result 16, Processing Time 0.021 seconds

Remote Water Quality Warning System Using Water Fleas

  • Park Se-Hyun;Kim Eung-Soo;Park Se-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • Hardware for monitoring the water quality using water fleas is developed. Water flea is a frequently used biological sensor for monitoring the water quality. Water fleas quickly respond to the incoming toxic water by changing their activity when they are exposed. By measuring the activity of water fleas, the incoming toxic water is instantly detected. So far the measurement of activity of water fleas has been done with a system equipped with both a light source of LED and a light detector of photo transistor. Water flea itself is, however, sensitive to light resulting in incorrect response and the system has two inconvenient separate parts of the light source and the detector. This paper suggests a system using a CCD camera instead of a light source and a detector. The suggested system processes the image data from the CCD camera in real time without any delay. The developed system becomes a part of the remote water monitoring embedded system.

Implementation of Real-time Measurement Hardware for Activity of Water Flea and Remote Monitoring System using CCD Camera (CCD 카메라를 사용한 물벼룩의 실시간 활동량 측정 하드웨어와 원격 모니터링 시스템 구현)

  • Park, Se-Huyn;Park, Se-Hoon;Kim, Eung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.30-37
    • /
    • 2007
  • Hardware for monitoring the water quality is developed using water fleas. Water flea is a frequently used biological sensor for monitoring the water quality. Water fleas quickly respond to the incoming toxic water by changing their activity when they are exposed. By measuring the activity of water fleas, the incoming toxic water is instantly detected in real time. So far the measurement of activity of water fleas has been done with a system equipped with a light source of LED and a light detector of photo transistor. Water flea itself is, however, sensitive to light resulting in incorrect response and the system has two inconvenient separate parts of the light source and the detector. This paper suggests a system using a CCD camera instead of a light source and a detector. The suggested system processes the image data from the CCD camera in real time without any delay. The developed system becomes a part of the remote water monitoring embedded system.

Reproduction of Water Flea by the Culture Conditions (배양조건에 따른 물벼룩의 개체생산 특성)

  • Choe, Sung-Hun;Lim, Byung-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.208-214
    • /
    • 2003
  • Four species of water fleas (Daphnia magna, Daphnia pulex, Daphnia galeata, and Moina macrocopa) were examined for the clarification of their reproduction with culture conditions. The reproduction tests of water flea by the culture conditions were carried out. For the comparison of the reproduction rate, five media (manure-soil medium, DIN medium, M4 medium, EPA medium, fertilizer medium) were applied to determine the best medium. Daphnia magna, Daphnia pulex, and Moina macrocopa were appeared the best reproduction in the manure-soil medium at $20^{\circ}C.$ The lifespan and young reproduction were better in manure-soil medium than the others. But Daphnia galeata was lived for 34 days in the fertilizer medium at $20^{\circ}C.$ The culture of Daphnia galeata was difficult to rear than the other species. In the current study, the microcystin of Microcystis sp. did not particularly affect on the survival of water fleas. But the lifespan was short and the reproduction rate was low. Therefore water flea have a preference for Scenedesmus sp. than Microcystis sp. On the condition of the feeding Scenedesmus sp., all examined water fleas appeared to have the longest lifespan and the most young water fleas produced at any medium and temperature as compared with the feeding the Microcystis sp. For the culture temperature, the lifespan was longer on $20^{\circ}C$ than $15^{\circ}C$.

Fundamentals of Ecotoxicity Evaluation Methods Using Domestic Aquatic Organisms in Korea : (II) Water Flea (국내 생물종을 이용한 생태독성평가 기반연구 : (II) 물벼룩류)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Woo-Mi
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.357-369
    • /
    • 2007
  • Water fleas are very important organisms in aquatic ecosystem because they are key constituents of food webs as either glazers or foods for predators. Daphnia magna is a representative test species and it has been extensively used in ecotoxicity evaluation. However, Daphnia magna has not been found yet in Korean water environment. There are limitations of using the foreign species such as Daphnia magna to reflect domestic situations in Korea. Consequently it is mandatory to find domestic species suitable for bioassay, and to develop corresponding toxicity test methods using the domestic species. In this study, we widely collected the domestic and foreign toxicity test methods performed by using domestic water fleas in Korea. The 58 test methods were collected from the standard methods (OECD, US EPA, ASTM), government reports, SCI papers and domestic papers. Ten domestic water fleas selected were Bosmina longirostris, Ceriodaphnia dubia, Ceriodaphnia reticulata, Daphnia obtusa, Daphnia puex, Moina macrocopa, Moina micrura, Simocephalus mixtus, Simocephalus serrulatus, and Simocephalus vetulus. We suggested the domestic ecotoxicity test methods using domestic water fleas in Korea through providing a range of test conditions, and future directions for toxicity test using water flea. This study could be a useful basis for establishing the aquatic toxicity test methods with domestic organisms in Korea.

Toxicity Evaluation of Tar Colors by Water Fleas and Luminescent Bacteria (물벼룩과 형광성 박테리아를 이용한 타르색소의 독성평가)

  • Choo, Yeon Jong;Kim, Gun Heung;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2007
  • In Korea, we assign the chemical substances of 535 types as toxic substance. Only 10% of the 535 toxic substances are being managed by the Ministry of Environment related with water quality standard. Tar color is also one of chemical substances, but we have the lacks for the information of tar colors about the environmental effects of aquatic ecosystem. This study performed the test of bioassay using Water Fleas and Luminescent Bacteria. The tar has 7 types of colors allowed as the edible color and we evaluate the toxicities of 5 tar colors out of 7 colors and we would like to provide the informations for further study as we perform the toxicity test for the samples of 5 tar colors. We did the toxicity test of using Water Fleas From the results, we obtained the magnitudes of toxicity in order of Red No.2, Yellow No.5, Red No.3, Yellow No.4, Blue No.1. As the result based on Microtox Acute Toxicity Test using Luminescent Bacteria with the standard of 15min-EC50, we obtained in order of Yellow No.5, Food Red No.3, Red No.2, Yellow No.4, Blue No.1. We could expect the tar colors may have different effects on the aquatic ecosystem, respectively and it may influence to the aquatic ecosystem and the human, because of bioconcentration by food chain when toxicity of the tar colors overflow in the aquatic ecosystem.

  • PDF

The Rotifer Brachionus calyciflorus and Water Flea Moina macrocopa as Alternative Foods for Production of the Fighting Fish Betta splendens (베타(Betta splendens)의 부화 후 로티퍼(Brachionus calyciflor)와 물벼룩(Moina macrocopa)의 섭취, 소화속도 및 성장)

  • Kwon, O-Nam;Park, Kie Young;Park, Heum-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.393-398
    • /
    • 2013
  • The purpose of this study was to determine how an ornamental fish, such as the fighting fish, Betta splendens would respond to the use of freshwater live-prey, such as rotifers Brachionus calyciflorus and water fleas Moina macrocopa. Ingested quantity, digestive velocity and somatic growth were compared between larvae fed a freshwater rotifer and those fed boiled yolk. Food efficiency and somatic growth were compared between larvae that were fed freshwater water fleas and those fed a micro-diet developed for flounder ($250{\mu}m$, I-hwa Ltd.). The number of rotifers ingested by larvae reached a maximum of 191 per day. However, based on the number ingested per hour and the digestive velocity of consumed rotifers, the maximum ingestible and digestible number of rotifers was calculated to be 272 per day. A maximum of 67 individuals (mean, 49.8 individuals) could be completely digested within the 1-h period from 90 to 180 min after feeding. Somatic growth was enhanced in larvae that were fed rotifers compared to those fed boiled yolk. Larvae exhibited greater growth at rotifer densities of 30 and 40 per mL than at lower densities. Among the water-flea (M. macrocopa and Bosmina sp.) and micro-particle diets, feeding with M. macrocopa resulted in the greatest somatic growth of larvae during the water-flea feeding stage.

Ecological Toxicity Assessment in Wetland Sediments (습지 퇴적물의 생태 환경독성도 평가)

  • Lee, Chan-Won;Kwon, Young-Taek
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.69-85
    • /
    • 2000
  • Wetlands are generally thought to be among the most fertile and productive ecosystems of the world. They provide a variety of ecological functions to the landscape. In recent years there has been considerable research activity to generate more scientific documentation on the ecological functions of wetlands. Many pollutants released to the environment settle and accumulate in the silt and mud called sediment on the bottoms of wetlands. Contaminated sediment can cause adverse effects to aquatic organism and eventually to ecological system. Sediment toxicity test with water fleas has been done by standardized preparation method of pore and elutriate water methods described in the literature for the need to protect Woopo wetlands. The results of Daphnia magna, Ceridaphnia dubla and Simocephalus sp. toxicity test were compared and discussed in terms of the relative sensitivity and discrimination abilities with both pore and elutriate water obtained from the sediments of Woopo wetlands.

  • PDF

Application of simple and massive purification system of dsRNA in vivo for acute toxicity to Daphnia magna

  • CHOI, Wonkyun;LIM, Hye Song;KIM, Jin;RYU, Sung-Min;LEE, Jung Ro
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.533-539
    • /
    • 2018
  • The RNA interference (RNAi) has been considered as an important genetic tool and applied to develop a new living modified (LM) crop trait which is an improvement of nutrient quality or pest management. The RNAi of DvSnf7 has been used for resistance to LM maize and the Western Corn Rootworm which is a major agricultural pest for the US Corn Belt. Most of the environmental risk assessments (ERA) of double strand RNA (dsRNA) have been performed using in vitro transcript products, and not in vivo expressed product. A large amount of dsRNA was required for the acute toxicity assay of water fleas. Therefore development of massive dsRNA purification techniques is critical. Daphnia, a freshwater microcrustacean, is a model organism for studying cellular and molecular mechanism involved in life history traits and ecotoxicology. In this study, we established the massive dsRNA purification method using Escherichia coli and implemented acute toxicity assays to Daphnia magna. As a result, the present RNase A and DNase I, dsRNA was efficiently purified without any special techniques or equipment. Even though purified dsRNA existed during the acute toxicity test, lethality or abnormal behavior were not observed in D. magna. These results indicated that GFP and DvSnf7 dsRNA were not significantly affected to D. magna due to their lack of sequence matching in its genome. The purification method of dsRNA and the acute toxicity assay of water fleas using purified dsRNA would be suitable for the toxicological studies of LMOs to aquatic non-target organisms.

Dracunculiasis in oral and maxillofacial surgery

  • Kim, Soung Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.2
    • /
    • pp.67-76
    • /
    • 2016
  • Dracunculiasis, otherwise known as guinea worm disease (GWD), is caused by infection with the nematode Dracunculus medinensis. This nematode is transmitted to humans exclusively via contaminated drinking water. The transmitting vectors are Cyclops copepods (water fleas), which are tiny free-swimming crustaceans usually found abundantly in freshwater ponds. Humans can acquire GWD by drinking water that contains vectors infected with guinea worm larvae. This disease is prevalent in some of the most deprived areas of the world, and no vaccine or medicine is currently available. International efforts to eradicate dracunculiasis began in the early 1980s. Most dentists and maxillofacial surgeons have neglected this kind of parasite infection. However, when performing charitable work in developing countries near the tropic lines or other regions where GWD is endemic, it is important to consider GWD in cases of swelling or tumors of unknown origin. This paper reviews the pathogenesis, epidemiology, clinical criteria, diagnostic criteria, treatment, and prevention of dracunculiasis. It also summarizes important factors for maxillofacial surgeons to consider.

The Growing and Spawning of tile Catfish, Clarias batrachus in the Aquarium (수조내에서의 열대산 메기, Clarias batrachus의 사육과 산난부화)

  • Jo Jae-Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.32-36
    • /
    • 1981
  • Fry of a Siamic catfish Clarias batrachus was brought to Korea on August 14,1979 and exper-imentally reared for a whole life cycle in a small water recycling aquarium. After 29 days since start of feeding the fry were measured 5 cm in 1ength and 1.43 g in body weight and after 260 days they were measured 205.7 g average. Chorionic gonadotrophin (2 IU) was injected to a healthy female (224 g) and after 63 hours fertilized eggs were obtained in a small water recycling aquarium. About 1,300 fry were hatched out 20 hours after spawning at $30^{\circ}C$ constant water temperature. The fry began to feed on water fleas 53 hours after hatching. My sincere thanks are due to Mr. Panu Tavarutmaneegu1, Mr. Chanchai Sansrimahachai and Miss Revadee Spriprasert, National Inland Fisheries Institute, Bangkok, Thailand for their cooperative arrangement to bring the fry of Clarias batrachus to Korea for this experiment.

  • PDF