• Title/Summary/Keyword: Water Erosion Prediction Project (WEPP)

Search Result 10, Processing Time 0.022 seconds

Soil Erosion Assessment Tool - Water Erosion Prediction Project (WEPP) (토양 침식 예측 모델 - Water Erosion Prediction Project (WEPP))

  • Kim, Min-Kyeong;Park, Seong-Jin;Choi, Chul-Man;Ko, Byong-Gu;Lee, Jong-Sik;Flanagan, D.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.235-238
    • /
    • 2008
  • The Water Erosion Prediction Project (WEPP) was initiated in August 1985 to develop new generation water erosion prediction technology for federal agencies involved in soil and water conservation and environmental planning and assessment. Developed by USDA-ARS as a replacement for empirical erosion prediction technologies, the WEPP model simulates many of the physical processes important in soil erosion, including infiltration, runoff, raindrop detachment, flow detachment, sediment transport, deposition, plant growth and residue decomposition. The WEPP included an extensive field experimental program conducted on cropland, rangeland, and disturbed forest sites to obtain data required to parameterize and test the model. A large team effort at numerous research locations, ARS laboratories, and cooperating land-grant universities was needed to develop this state-of-the-art simulation model. The WEPP model is used for hillslope applications or on small watersheds. Because it is physically based, the model has been successfully used in the evaluation of important natural resources issues throughout the United State and in several other countries. Recent model enhancements include a graphical Windows interface and integration of WEPP with GIS software. A combined wind and water erosion prediction system with easily accessible databases and a common interface is planned for the future.

Region-Scaled Soil Erosion Assessment using USLE and WEPP in Korea

  • Kim, Min-Kyeong;Jung, Kang-Ho;Yun, Sun-Gang;Kim, Chul-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.314-320
    • /
    • 2008
  • During the summer season, more than half of the annual precipitation in Korea occurs during the summer season due to the geographical location in the Asian monsoon belt. So, this causes severe soil erosion from croplands, which is directly linked to the deterioration of crop/land productivity and surface water quality. Therefore, much attention has been given to develop accurate estimation tools of soil erosion. The aim of this study is to assess the performance of using the empirical Universal Soil Loss Equation (USLE) and the physical-based model of the Water Erosion Prediction Project (WEPP) to quantify eroded amount of soil from agricultural fields. Input data files, including climate, soil, slope, and cropping management, were modified to fit into Korean conditions. Chuncheon (forest) and Jeonju (level-plain) were selected as two Korean cities with different topographic characteristics for model analysis. The results of this current study indicated that better soil erosion prediction can be achieved using the WEPP model since it has better power to illustrate a higher degree of spatial variability than USLE in topography, precipitation, soils, and crop management practices. These present findings are expected to contribute to the development of the environmental assessment program as well as the conservation of the agricultural environment in Korea.

Application of GeoWEPP to determine the annual average sediment yield of erosion control dams in Korea

  • Rhee, Hakjun;Seo, Junpyo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.803-814
    • /
    • 2020
  • Managing erosion control dams requires the annual average sediment yield to determine their storage capacity and time to full sediment-fill and dredging. The GeoWEPP (Geo-spatial interface for Water Erosion Prediction Project) model can predict the annual average sediment yield from various land uses and vegetation covers at a watershed scale. This study assessed the GeoWEPP to determine the annual average sediment yield for managing erosion control dams by applying it to five erosion control dams and comparing the results with field observations using ground-based LiDAR (light detection and ranging). The modeling results showed some differences with the observed sediment yields. Therefore, GeoWEPP is not recommended to determine the annual average sediment yield for erosion control dams. Moreover, when using the GeoWEPP, the following is recommended :1) use the US WEPP climate files with similar latitude, elevation and precipitation modified with monthly average climate data in Korea and 2) use soil files based on forest soil maps in Korea. These methods resulted in GeoWEPP predictions and field observations of 0 and 63.3 Mg·yr-1 for the Gangneung, 142.3 and 331.2 Mg·yr-1 for the Bonghwa landslide, 102.0 and 107.8 Mg·yr-1 for the Bonghwa control, 294.7 and 115.0 Mg·yr-1 for the Chilgok forest fire, and 0 and 15.0 Mg·yr-1 for the Chilgok control watersheds. Application of the GeoWEPP in Korea requires 1) building a climate database fit for the WEPP using the meteorological data from Korea and 2) performing further studies on soil and streamside erosion to determine accurate parameter values for Korea.

Estimating of Soil Loss from Hillslope Using WEPP Model (WEPP 모형을 이용한 경사지 토양유실량 추정)

  • Son, Jung-Ho;Park, Seung-Woo;Kang, Min-Goo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.45-50
    • /
    • 2001
  • The purpose of this study was to estimate of soil loss form hillslope using WEPP(Water Erosion Prediction Project) model. WEPP model was developed for predicting soil erosion and deposition, fundamentally based on soil erosion prediction technology. The model for predicting sediment yields from single storms was applied to a tested watershed. Surface runoff is calculated by kinematic wave equation and infiltration is based on the Green and Ampt equation. Governing equations for sediment continuity, detachment, deposition, shear stress in rills, and transport capacity are presented. Tested watershed has an area of 0.6ha, where the runoff and sediment data were collected. The relative error between predicted and measured runoff was $-16.6{\sim}2.2%$, peak runoff was $-15.6{\sim}2.2%$ and soil loss was $-23.9{\sim}356.5%$.

  • PDF

Applying Evaluation of Soil Erosion Models for Burnt Hillslopes - RUSLE, WEPP and SEMMA (산불사면에 대한 토양침식모형의 적용 평가 - RUSLE, WEPP, SEMMA)

  • Park, Sang Deog;Shin, Seung Sook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.221-232
    • /
    • 2011
  • Applicability of three soil erosion models for burnt hillslopes was evaluated. The models were estimated with the data from plots established after tremendous wildfire occurred in the east coastal region. Soil erosion and surface runoff were simulated by the Water Erosion Prediction Project (WEPP) and the Revised Universal Soil Loss Equation (RUSLE) of application mode for disturbed forest areas and the Soil Erosion Model for Mountain Areas (SEMMA) developed for burnt hillslopes. Simulated sediment yield and surface runoff were compared with the measured those. In maximum value of sediment yield, three models was under-predicted and RUSLE and WEPP had difference of over two times. SEMMA showed the best model response coefficient, determination coefficient and the model efficiency. In application of models to the soil erosion according to the elapsed year after wildfire, all models were underestimated in initial stage disturbed by wildfire. Evaluation of models in this burnt hillslopes was shown the tends to under-predict soil erosion for larger measured values. Although a lot of sediment can be generated in small rainfall event as fine-grained soil of the high water repellency was exposed excessively right after wildfire, this under-prediction was shown that those models have a limit to estimate the weighted factors by wildfire.

Applications of WEPP Model to a Plot and a Small Upland Watershed (WEPP 모형을 이용한 밭포장과 밭유역의 토양 유실량 추정)

  • Kang, Min-Goo;Park, Seung-Woo;Son, Jung-Ho;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.87-97
    • /
    • 2004
  • The paper presents the results from the applications of the Water Erosion Prediction Project (WEPP) model to a single plot, and also a small watershed in the Mid Korean Peninsula which is comprised of hillslopes and channels along the water courses. Field monitoring was carried out to obtain total runoff, peak runoff and sediment yield data from research sites. For the plot of 0.63 ha in size, cultivated with com, the relative error of the simulated total runoff, peak runoff rates, and sediment yields using WEPP ranged from -16.6 to 22%, from -15.6 to 6.0%, and from 23.9 to 356.4% compared to the observed data, respectively. The relative errors for the upland watershed of 5.1 ha ranged from -0.7 to 11.1 % for the total runoff, from -6.6 to 35.0 % for the sediment yields. The simulation results seem to justify that WEPP is applicable to the Korean dry croplands if the parameters are correctly defined. The results from WEPP applications showed that the major source areas contributing sediment yield most are downstream parts of the watershed where runoff concentrated. It was suggested that cultural practice be managed in such a way that the soil surface could be fully covered by crop during rainy season to minimize sediment yield. And also, best management practices were recommended based on WEPP simulations.

Estimating and Analysis of Soil Loss from Upland Watershed Using WEPP Model (WEPP 모형을 이용한 밭유역의 토양 유실량 추정 및 분석)

  • Kang, Min-Goo;Park, Seung-Woo;Son, Jung-Ho;Kang, Moon-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.85-88
    • /
    • 2002
  • This paper presents the result of the Water Erosion Prediction Project(WEPP) watershed scale model's application for prediction of sediment yield from a watershed which is comprised of hillslopes and channels and analyses of the soil loss from hillslopes and channels with crop practice and shape. To evaluate the model's application, the model is applied to a watershed that comprised of six hillslope and one channel, and the result was a good agreement with the observed values. The soil loss from hillslope was increased as the hills lope was under fallow conditions and slope length was longer. The soil loss from the channel was increased at the downstream for the concentration of flow.

  • PDF

Evaluation of Runoff Prediction from Managed Golf Course using WEPP Watershed Model (WEPP 모형을 이용한 골프장 잔디 관리에 따른 유출특성 모의)

  • Choi, Jaewan;Shin, Min Hwan;Ryu, Ji Chul;Kum, Donghyuk;Kang, Hyunwoo;Cheon, Se Uk;Shin, Dong Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • It has been known that Golf course could impose negative impacts on water-ecosystem if pollutant-laden runoff is not treated well. It is important to control non-point source and re-use treated wastewater from the golf course to secure water quality of receiving waterbodies. At golf courses, the rainfall-runoff is affected by various practices to manage grasses. In many hydrological modelings, especially in simple rainfall-runoff modeling, effects on runoff of plant growth and cutting are not considered. In the study, the water erosion prediction project (WEPP), capable of simulating plant growth and various management, was evaluated for its runoff prediction from golf course under grass cutting and irrigation. The %Difference, $R^2$ and the NSE for runoff comparisons were 1.15%, 0.93 and 0.92 for calibration, and 18.12%, 0.82 and 0.88 for validation period, respectively. In grass cutting scenario, grass height was managed to be 18~25 mm. The estimated runoff was decreased by 27%. The difference in estimated total runoff was 11.8% depending on irrigation. As shown in this study, if grass management and irrigation are well-controlled, water quality of downstream areas could be obtained.

Evaluation of Runoff Prediction from a Coniferous Forest Watersheds and Runoff Estimation under Various Cover Degree Scenarios using GeoWEPP Watershed Model (GeoWEPP을 이용한 침엽수림 지역 유출특성 예측 및 다양한 식생 피도에 따른 유출량 평가)

  • Choi, Jaewan;Shin, Min Hwan;Cheon, Se Uk;Shin, Dongseok;Lee, Sung Jun;Moon, Sun Jung;Ryu, Ji Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.425-432
    • /
    • 2011
  • To control non-point source pollution at a watershed scale, rainfall-runoff characteristics from forest watersheds should be investigated since the forest is the dominant land use in Korea. Long-term monitoring would be an ideal method. However, computer models have been utilized due to limitations in cost and labor in performing long-term monitoring at the watersheds. In this study, the Geo-spatial interface to the Water Erosion Prediction Project (GeoWEPP) model was evaluated for its runoff prediction from a coniferous forest dominant watersheds. The $R^2$ and the NSE for calibrated result comparisons were 0.77 and 0.63, validated result comparisons were 0.92, 0.89, respectively. These comparisons indicated that the GeoWEPP model can be used in evaluating rainfall-runoff characteristics. To estimate runoff changes from a coniferous forest watershed with various cover degree scenarios, ten cover degree scenarios (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%) were run using the calibrated GeoWEPP model. It was found that runoff increases with decrease in cover degree. Runoff volume was the highest ($206,218.66m^3$) at 10% cover degree, whereas the lowest ($134,074.58m^3$) at 100% cover degree due to changes in evapotranspiration under various cover degrees at the forest. As shown in this study, GeoWEPP model could be efficiently used to investigate runoff characteristics from the coniferous forest watershed and effects of various cover degree scenarios on runoff generation.

EVALUATION OF AN ENHANCED WEATHER GENERATION TOOL FOR SAN ANTONIO CLIMATE STATION IN TEXAS

  • Lee, Ju-Young
    • Water Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Several computer programs have been developed to make stochastically generated weather data from observed daily data. But they require fully dataset to run WGEN. Mostly, meterological data frequently have sporadic missing data as well as totally missing data. The modified WGEN has data filling algorithm for incomplete meterological datasets. Any other WGEN models have not the function of data filling. Modified WGEN with data filling algorithm is processing from the equation of Matalas for first order autoregressive process on a multi dimensional state with known cross and auto correlations among state variables. The parameters of the equation of Matalas are derived from existing dataset and derived parameters are adopted to fill data. In case of WGEN (Richardson and Wright, 1984), it is one of most widely used weather generators. But it has to be modified and added. It uses an exponential distribution to generate precipitation amounts. An exponential distribution is easier to describe the distribution of precipitation amounts. But precipitation data with using exponential distribution has not been expressed well. In this paper, generated precipitation data from WGEN and Modified WGEN were compared with corresponding measured data as statistic parameters. The modified WGEN adopted a formula of CLIGEN for WEPP (Water Erosion Prediction Project) in USDA in 1985. In this paper, the result of other parameters except precipitation is not introduced. It will be introduced through study of verification and review soon

  • PDF