• Title/Summary/Keyword: Water Droplets

Search Result 414, Processing Time 0.025 seconds

Size Distribution of Droplets Sprayed by an Orchard Sprayer (과수방제기 살포입자의 직경 분포특성)

  • 구영모;신범수;김상헌
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2001
  • Generated agri-chemical droplets by orchard sprayers are evaporated regenerated and transported along wind streams. The droplets are deposited to targets after changing their sizes, affecting the retention of droplets. An orchard sprayer, designed for spraying grapevines was studied on the spatial distribution of droplet size. The experimental variables were spray direction (0, 22.5, 45, 67.5 and 90˚), distance(2.5, 3.0 and 3.5 m) and fan speed (2,075 and 3,031 rpm). Droplet sizes were converted and analyzed from spray stains, sampled using water sensitive papers. The number median diameter (NMD) increased with an increase of the distance due to disappeared fine droplets (<50 ㎛): however, the volume median diameter (VMD) decreased due to shrunken large droplets (>100 ㎛). Fast fan speed delivered large droplets to 3.5 m, but the spatial distributions of NMD and VMD were not uniform. Slower fan speed decreased the possibility of evaporation and drift; therefore, plenty of droplets were maintained up to 3.0 m. The upward blasting distance was limited within 3 m, but the limit to the ground level was extended to 3.5 m. Concentrated wind and droplets to the ground level should be redistributed to upper canopy direction, leading more uniform deposits. High speed wind and system pressure should be avoided because of generating fine droplets, which would be disappeared and drifted away.

  • PDF

Behavior of contaminated liquid CO2 droplets in the deep sea

  • Nguyen, Thao;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.257-257
    • /
    • 2015
  • Carbon Capture and Storage with ocean sequestration is being considered as one of the most effective option for reducing the $CO_2$ net flux from atmosphere nowadays. But it is still possible for $CO_2$ substance to leaks out from transport pipeline or from the under seabed storage sites and causing damage to ambient environment. The behavior of liquid $CO_2$ under droplet shape would be strongly affected by the presence of other contaminants such as $SO_2$ comes from processing processes. This presentation shows the behavior in the sea water of pure liquid $CO_2$ droplets as well as droplets that consist of $SO_2$ substances. The study uses computational fluid dynamic models in comparison with experimental data from other previous researchers. Droplet of liquid $CO_2$ is assumed to be released at several depths in deep ocean, with other environmental conditions are set up respectively. All calculations are conducted with many different ratio of contaminant $SO_2$ to provide fundamental data of those particles rising characteristics. The effect of contaminants on the behavior of $CO_2$ droplets would be clearly shown through the results of particle deformation, terminal rising velocity happen due to buoyancy force driving from the difference in density of $CO_2$ substance and ocean water around.

  • PDF

A Study on the Evaporation Characteristics of Water or Nanofluid Droplets on a Heated Surface (물과 나노유체 액적의 고온 벽면에서의 증발 특성에 관한 연구)

  • Kim, J.H.;Lee, K.J.;Jung, S.W.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.177-183
    • /
    • 2016
  • In this study, the evaporation characteristics of water or nanofluid droplets on a heated surface was investigated by visualization of the evaporation process and evaluation of the heat transfer coefficient using the droplet temperature measured. The evaporation characteristics was compared between water and nanofluid droplets and the effects of the mass ratio of nanofluid and the inclination of heated surface were analyzed. The heat transfer rate of nanofluid droplet was higher than that of water droplet. The heat transfer coefficient was increased with the increase of the mass ratio of nanofluid. The effect of the inclination of heated surface was much higher than that of fluid type used, which indicates that the inclination of heated surface should be considered as one of influential parameters in the spray cooling process.

Simple and Highly Efficient Droplet Merging Method Using a Microfluidic Device (미세유체소자를 이용한 간단하고 효율적인 액적의 병합)

  • Jin, Byung-Ju;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. Using a cross channel with inflows of one oil phase through the main channel and two water phases through the side channels, two droplets of different sizes can be generated alternatingly in accordance with flow rate difference of the water phases. It is shown that for a fixed oil phase flow rate, the flow rate of one water phase required for alternating droplet generation increases linearly with the flow rate of another water phase. By this method, the droplets are merged with 100 % efficiency without any additional driving forces.

A Study on the High Temperature Region Heat Transfer Coefficients for the Spray Cooling of Hot Flat Plates (평판 분무냉각 시의 고온역 열전달계수에 관한 연구)

  • Yoon, D.H.;Oh, C.;Yoon, S.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, experiments investigating the high-temperature region heat transfer coefficients for the spray cooling of hot flat plates were performed by down spray water using flat spray nozzles. The heat transfer surface is made of copper and is 100mm in length and 40mm in width and 15mm in thickness. The experimental condition of spray are as follows: temperatures of the water droplets are T=20~$80^{\circ}C$ and droplets volume fluxes are D=0.001565~0.010438$m^3/m^2s$. Next, correlating equations for the heat transfer characteristics of spray cooling in the high temperature region are developed from the effects of droplets volume flux and the surface temperature of heat transfer plate.

  • PDF

Development of a New Droplet Binary Collision Model Including the Stretching Separation Regime (스트레칭 분리 영역을 포함한 새로운 액적간 충돌 모델의 개발)

  • Ko, G.H.;Lee, S.H.;Roh, J.S.;Ryou, H.S.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • The present article proposes a new droplet collision model including the stretching separation regime and the formation of satellite droplets. The new model consists of several equations to calculate the post-collision characteristics of colliding droplets and satellite droplets. These equations are derived from the energy balance of droplets between before and after collision. For binary collision of water droplets, the new model shows good agreement with experimental data far the number of satellite droplets.

  • PDF

Thermodynamic and Aerodynamic Meanline Analysis of Wet Compression in a Centrifugal Compressor

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1475-1482
    • /
    • 2006
  • Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. Researches on wet compression, up to now, have been focused on the thermodynamic analysis of wet compression where the decrease in exit flow temperature and compression work is demonstrated. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline dry compression performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases.

A study on ice-slurry production by water spray (수분무에 의한 아이스 슬러리 생성에 관한 연구)

  • Kim, B.S.;Lee, Y.P.;Yoon, S.Y.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.134-143
    • /
    • 1997
  • A theoretical and experimental study has been performed to investigate the characteristics of ice-slurry product. By diffusion-controlled model, the possibility of ice slurry has been theoretically anticipated. The water vapor evaporated from the surface of droplets is extracted continuously from the chamber by a vacuum pump. The droplet diameter was measured by silion immersed method. The ice slurry has been obtained by spraying droplets of ethylene-glycol aqueous solution in the chamber where pressure is maintained under the triple point of water. The droplet of which the diameter is $300{\mu}m$, and the initial temperature is $20^{\circ}C$, was changed into ice particle within the chamber of which the height is 1.33m.

  • PDF

Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Tungsten Oxide nanowire surfaces

  • Gwak, Geun-Jae;Lee, Mi-Gyeong;Yong, Gi-Jung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.25.1-25.1
    • /
    • 2009
  • The effects of surface energyon the wetting transition for impinging water droplets were experimentally investigated on the chemically modified WOx nanowire surfaces. We could modify the surface energy of the nanostructures through chemisorption of alkyltrichlorosilanes with various carbon chain lengths and by the UV-enhanced decomposition of self assembled monolayer (SAM) molecules chemically adsorbedon the array. Three surface wetting states could be identified through the balance between antiwetting and wetting pressures. This approach establishes simple strategy for the design criteria for water-repellent surface to impinging droplets.

  • PDF

Influence of pH, Emulsifier Concentration, and Homogenization Condition on the Production of Stable Oil-in-Water Emulsion Droplets Coated with Fish Gelatin

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.999-1005
    • /
    • 2007
  • An oil-in-water (O/W) emulsion [20 wt% com oil, 0.5-6.0 wt% fish gelatin (FG), pH 3.0] was produced by high pressure homogenization, and the influence of pH, protein concentration, and homogenization condition on the formation of FG-stabilized emulsions was assessed by measuring particle size distribution, electrical charge, creaming stability, microstructure, and free FG concentration in the emulsions. Optical microscopy indicated that there were some large droplets ($d>10\;{\mu}m$) in all FG-emulsions, nevertheless, the amount of large droplets tended to decrease with increasing FG concentration. More than 90% of FG was present free in the continuous phase of the emulsions. To facilitate droplet disruption and prevent droplet coalescence within the homogenizer, homogenization time was adjusted in O/W emulsions stabilized by 2.0 or 4.0 wt% FG. However, the increase in the number of pass rather promoted droplet coalescence. This study has shown that the FG may have some limited use as a protein emulsifier in O/W emulsions.