• Title/Summary/Keyword: Water Disaster Management

Search Result 445, Processing Time 0.034 seconds

A Review on the Management of Water Resources Information based on Big Data and Cloud Computing (빅 데이터와 클라우드 컴퓨팅 기반의 수자원 정보 관리 방안에 관한 검토)

  • Kim, Yonsoo;Kang, Narae;Jung, Jaewon;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.100-112
    • /
    • 2016
  • In recent, the direction of water resources policy is changing from the typical plan for water use and flood control to the sustainable water resources management to improve the quality of life. This change makes the information related to water resources such as data collection, management, and supply is becoming an important concern for decision making of water resources policy. We had analyzed the structured data according to the purpose of providing information on water resources. However, the recent trend is big data and cloud computing which can create new values by linking unstructured data with structured data. Therefore, the trend for the management of water resources information is also changing. According to the paradigm change of information management, this study tried to suggest an application of big data and cloud computing in water resources field for efficient management and use of water. We examined the current state and direction of policy related to water resources information in Korea and an other country. Then we connected volume, velocity and variety which are the three basic components of big data with veracity and value which are additionally mentioned recently. And we discussed the rapid and flexible countermeasures about changes of consumer and increasing big data related to water resources via cloud computing. In the future, the management of water resources information should go to the direction which can enhance the value(Value) of water resources information by big data and cloud computing based on the amount of data(Volume), the speed of data processing(Velocity), the number of types of data(Variety). Also it should enhance the value(Value) of water resources information by the fusion of water and other areas and by the production of accurate information(Veracity) required for water management and prevention of disaster and for protection of life and property.

A Study on the Safety Measures for Thermal Diseases, Focusing on the Cases of Disaster by Construction Industry

  • Hye-Ryeong O;Won-Mo GAL;Ok-Nam Park;Mi-Hwa JANG;Seok-Soon KWO;Seung-Hyuck PARK
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.2
    • /
    • pp.49-56
    • /
    • 2024
  • Purpose: Construction sites are currently facing a socialization problem as the incidence of thermal disease-related disasters increases due to summer heat waves, exacerbated by factors like the concentration of middle-aged and older workers and global warming. The reason why construction sites are particularly vulnerable to heat waves is that there are many outdoor work, which is the peculiarity of the construction industry, and most of the construction workers are elderly. This study analyzes disaster statistics of workers at construction sites for five years to investigate the occurrence of thermal diseases and analyze factors through disaster cases to provide basic data for future disasters to be reduced. Research design, data, and methodology: According to the Construction Workers' Mutual Aid Association, as of June, more than 60% of the construction workers working in the field were in their 50s and 60s. More than 24% are in their 60s and older. Thermal diseases caused by heat waves occur when exposed to high heat or strong sunlight for a long time, accompanied by headaches and dizziness. The problem is that many elderly people have underlying diseases, so if they lose consciousness, they cannot easily recover and are likely to die. Results: According to industrial accident statistics, 182 people were injured by heat-related diseases in the summer from 2016 to 2021, of which 29 died. In particular, in the construction industry, which has a lot of outdoor work, 87 people were injured and 20 people died. Conclusions: In order to prevent heat diseases caused by outdoor work, it is emphasized that exposure time is controlled, and sufficient rest and hydration are essential. Rest, water, and shade are in line with the three principles.

Development of interception capacity equations according to grate inlet types (빗물받이 형상에 따른 차집량 산정식 개발)

  • Choi, Sung Yeul;Eom, Kwangho;Choi, Seungyong;Cho, Jaewoong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.851-861
    • /
    • 2016
  • Recently, natural disasters, which are hard to predict and prevent, are rapidly increasing due to climate change worldwide. Particularly the damage scale of urban areas is increasing because of local torrential rainfall. In urban areas, the rain water cannot flow to pipes well due to the high percentage of impervious areas by the indiscriminate development. As a result, the inundation damage is getting higher in urban areas. So we need to characterize the interception of the grate inlets to ensure good drainage in impervious areas. But Korean installation criteria of grate inlets does not reflect road and drainage sector characteristics so the grate inlets do not function properly in many areas. In this study, we suggest the interception capacity equations about grate inlets through hydraulic experiments in various conditions. Therefore, the interception capacity changes are analyzed according to bearing bar slopes of grate inlets, grate inlet sizes and shapes and connecting pipe numbers. Though this, we developed the interception capacity equations about domestic grate inlets.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

Extraction of Water Body Area using Micro Satellite SAR: A Case Study of the Daecheng Dam of South korea (초소형 SAR 위성을 활용한 수체면적 추출: 대청댐 유역 대상)

  • PARK, Jongsoo;KANG, Ki-Mook;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.41-54
    • /
    • 2021
  • It is very essential to estimate the water body area using remote exploration for water resource management, analysis and prediction of water disaster damage. Hydrophysical detection using satellites has been mainly performed on large satellites equipped with optical and SAR sensors. However, due to the long repeat cycle, there is a limitation that timely utilization is impossible in the event of a disaster/disaster. With the recent active development of Micro satellites, it has served as an opportunity to overcome the limitations of time resolution centered on existing large satellites. The Micro satellites currently in active operation are ICEYE in Finland and Capella satellites in the United States, and are operated in the form of clusters for earth observation purposes. Due to clustering operation, it has a short revisit cycle and high resolution and has the advantage of being able to observe regardless of weather or day and night with the SAR sensor mounted. In this study, the operation status and characteristics of micro satellites were described, and the water area estimation technology optimized for micro SAR satellite images was applied to the Daecheong Dam basin on the Korean Peninsula. In addition, accuracy verification was performed based on the reference value of the water generated from the optical satellite Sentinel-2 satellite as a reference. In the case of the Capella satellite, the smallest difference in area was shown, and it was confirmed that all three images showed high correlation. Through the results of this study, it was confirmed that despite the low NESZ of Micro satellites, it is possible to estimate the water area, and it is believed that the limitations of water resource/water disaster monitoring using existing large SAR satellites can be overcome.

Water Erosion and Its Combating Measures in Loess Plateau, China (중국 황토고원지구의 물침식과 대책)

  • Chun, Kun-Woo;Lim, Young-Hyup;Oh, Jeong-Soo;Yoon, Taek-Seong;Park, Ki-Hyung
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.181-192
    • /
    • 2010
  • Water erosion is progressing in the Loess Plateau, especially in gullies, and the sediment runoff to the Yellow River amounts to 975 million tons every year. Natural factors for water erosion include climate, soil, geological feature, terrain and vegetation. Many development projects due to the increasing population reduced the forest coverage ratio to 10%, and 200 million people in the downstream area are suffering from the damage during intense rainfall. Accordingly, the Chinese government is continuously trying to efficiently prevent the erosion by establishing measures for water erosion, including fish-scale pits, terrace technique, and check dams.

Development of a Framework of Emergency Action Plan for Domestic Water Front Critical Infrastructure (국내 주요 수변시설물 EAP 프레임워크 개발)

  • Park, Su-Yeul;Choi, Soo-Young;Oh, Eun-Ho;Kim, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.125-134
    • /
    • 2017
  • Unusual precipitation caused by typhoons and severe rain stormscan threaten human life and property. Thus, various organizations prepare emergency action plans (EAPs) to provide proper guidelines for operators, experts, and emergency response personnel to protect and enhance critical infrastructure. For example, FEMA and DHS have various types of EAPs for dams, levees, and other structures to protect people and property. FEMA defines EAPs as official documents to decrease the damage and impact in emergency situations and to reduce casualties. These documents should consider all possible situations in an emergency and can reduce problems in facility management. This study analyzes EAPs for infrastructure from the USA, Japan, and Korea in order to suggest an ideal EAP framework. EAPcontent can include how to guide experts and operators in disaster stages (mitigation, preparedness, response, and recovery), how to operate emergency equipment, and how to protect critical infrastructure and life. The suggested EAP framework performed very well in a test location. It can therefore be used for infrastructure organizations in Korea and to inform of the appropriate processes and methods for risk reduction in flood disasters.

Analysis the dynamic factors on the capsize of O-Ryong 501 (제501오룡호 전복사고의 역학적 요인 분석)

  • KIM, Yong-Jig;KANG, Il-Kwon;HAM, Sang-Jun;PARK, Chi-Wan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • A tragic disaster happened by capsizing O-Ryong 501 trawler at Western Bering Sea in 1st, Dec. 2014. The disaster was caused by the severe weather and the long deferred escape from the storm in fully developed high sea. Lots of sea water from poop deck rushed into the fish ponder with fishes all together after hauling net and then remove the fishes from codend. The vessel became to incline to the one side caused by the weight and the free surface effect of flood sea waters and fishes at initial stage. In spite of crews all effort to discharge the waters, but the work was not achieved successfully. For the worse thing, the order of abandon ship was issued too late. After all, the ship capsized and sank, then almost crews became to the victims of the casualty including captain. In this paper, author carried out restrictively the calculation of dynamic factors influenced on the disaster including the weather condition and effects of the flood sea waters, and found out that the most important causes of the disaster were the decrease of stabilities, GM was decreased from 0.9m to 0.08 m, and the high waves which led to the vessel disaster.

A review on vibration-based structural pipeline health monitoring method for seismic response (지진 재해 대응을 위한 진동 기반 구조적 관로 상태 감시 시스템에 대한 고찰)

  • Shin, Dong-Hyup;Lee, Jeung-Hoon;Jang, Yongsun;Jung, Donghwi;Park, Hee-Deung;Ahn, Chang-Hoon;Byun, Yuck-Kun;Kim, Young-Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.5
    • /
    • pp.335-349
    • /
    • 2021
  • As the frequency of seismic disasters in Korea has increased rapidly since 2016, interest in systematic maintenance and crisis response technologies for structures has been increasing. A data-based leading management system of Lifeline facilities is important for rapid disaster response. In particular, the water supply network, one of the major Lifeline facilities, must be operated by a systematic maintenance and emergency response system for stable water supply. As one of the methods for this, the importance of the structural health monitoring(SHM) technology has emerged as the recent continuous development of sensor and signal processing technology. Among the various types of SHM, because all machines generate vibration, research and application on the efficiency of a vibration-based SHM are expanding. This paper reviews a vibration-based pipeline SHM system for seismic disaster response of water supply pipelines including types of vibration sensors, the current status of vibration signal processing technology and domestic major research on structural pipeline health monitoring, additionally with application plan for existing pipeline operation system.

Development of Wireless Real Time River Water Quality Management System with GPS and GIS (GIS와 GPS를 연계한 무선 실시간 하천수질관리시스템 개발)

  • Yi, Jae-Eung;Ha, Sang-Min;Lee, Jong-Kook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.69-75
    • /
    • 2002
  • In this paper the development of a real time river water quality management system is described. This system can manage a river water quality fluctuation by finding out abnormal conditions quickly and exactly. The GIS based monitoring system collects various properties of river water quality through the wireless real time network. Tanchun, the first branch of the Han River was selected as the target basin of the system development. This system is composed of three parts - wireless real time field measuring system with a GPS receiver, a server computer and a GIS platform. After the first field test in Tanchun basin, the result showed the many possibilities of measuring various water quality properties in real time and storing the data and analyzing them within the GIS environment in real time in very efficient manners. It is expected that the developed system will contribute to the efficient management of a river water quality control and water quality related disaster prevention purposes.