• Title/Summary/Keyword: Water/air temperature relationship

Search Result 101, Processing Time 0.02 seconds

Varietal Differences in Days Required to Leaf Expansion, Leaf Number on Main Culm, and Days to Heading of Rice under Cold Water Flow System (찬물 흘려대기 논의 수온 분포에 따른 벼의 엽 전개 일수 및 주간엽수와 출수일수의 품종간 차이)

  • 윤성호;윤종선;유길림;박창기;정근식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.3
    • /
    • pp.214-219
    • /
    • 1991
  • To clarify the relationship between ambient water temperature and heading characteristics of rice (Oryza sativa L.), twelve of varieties rice were grown in a cold tolerance screening field where water temperature was controlled by continuous cold water irrigation system to test the cold tolerance of rice. When cold water was continuously irrigated with 5 cm of water depth, the water had stagnated for about three hours, and the water temperature increased gradually from inlet toward outlet in the experimental plot. The fluctuation of water temperature was well synchronized with that of ambient air temperature, and the water temperature near outlet became higher than the air temperature at the vegetative phase, while became lower at the reproductive phase of rice plant community. The leaf development rates on main culm increased by increased water temperature. The rice varities, Fukuhikari, Sangpungbyeo and YR3486-16-2 were more sensitive than the others in the response of leaf development to water temperature. However, Janack and Milyang 42 were comparatively less sensitive to water temperature in leaf development. Janack and Paro -white rices required longer days to develop one leaf on main culm at reproductive phase than at vegetative phase. Varietal difference in days required to develop one leaf on main culm of rice plant was more distinctive at the reproductive phase when water temperature was relatively lower than at the vegetative phase with relatively higher water temperature condition. No difference was found between the growth phases, vegetative and reproductive, in the response of average leaf developmental rates to water temperature under the similar air temperature condition. The estimated average days required to develop one leaf on main culm decreased by 1.3 day by 1$^{\circ}C$ increase in water temperature. Varietal differences in the total number of leaves on main culm depended upon the water temperature, in which the varieties such as Fukuhikari, Gwangmyeon-gbyeo, China 988, and YR3486-16-2 showed increased one leaf by increased water temperature, while Sobaekbyeo, Paro-white, Sangpungbyeo, Pungsanbyeo, Samgangbyeo, and Milyang 42 were kept at the same leaf number regardless of water temperature. However, the total leaf number on main culm and days to heading of Janack increased by increased water temperature. The other varieties showed the shortened days to heading by the increase in water temperature with noticeable varietal differences regardless of the variation in the total number of leaves on main culm.

  • PDF

The Relationship between Climatic and Oceanographic Factors and Laver Aquaculture Production (기후 및 해양 요인과 김 생산량과의 관계에 관한 연구)

  • Kim, Do-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.44 no.3
    • /
    • pp.77-84
    • /
    • 2013
  • While some steps in laver aquaculture production can be controlled artificially to a certain extent, the culturing process is largely affected by natural factors, such as the characteristics of seawater, climatic and oceanographic conditions, etc. This study aims to find a direct relationship between climatic and oceanographic factors (water temperature, air temperature, salinity, rainfall, sunshine duration and wind speed) and laver aquaculture production in Wando region, the biggest aquaculture production area of laver, located in the southwest coast of Korea using a multiple regression analysis. Despite the small sample size of a dependent variable, the goodness of model fit appeared acceptable. In addition, the R-squared value was 0.951, which means that the variables were very explanatory. Model results indicated that duration of sunshine, temperature, and rainfall during the farming period from the end of September to the end of April would be important factors affecting significantly to the laver aquaculture production.

Earth Science Prospective Teachers' Perceptions on the Relationship between Absolute Humidity and Dew Point Temperature (절대 습도와 이슬점 온도의 관계에 대한 지구과학 예비 교사들의 인식)

  • Kang, So Ra;Seo, Eun-Kyoung;Kim, Dong Young
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.624-638
    • /
    • 2019
  • A questionnaire was administered, and all responses were analyzed to examine prospective teachers' conceptual understanding of the relationship between dew point temperature and absolute humidity in air parcels. The responses revealed that many prospective teachers have substantial misconceptions about the relationship. For example, some thought that the absolute humidity and the dew point temperature are proportional to each other, and that the dew point temperature is proportional to the water vapor mass in the parcel. The misconceptions seemingly stemmed from inadequate descriptions on the relationship in middle-school science textbooks of the 7th and 2007 revised curricula. The study notes that the first year students' textbook of the 2015 revised curriculum introduced the concepts of evaporation, condensation, and volume changes as a function of gaseous pressure and temperature, from a perspective of molecular motion. It is suggested that keeping this perspective in the middle school curriculum, while introducing water vapor pressure as the measure of water vapor amount and dew point temperature, should help prevent middle school teachers and students from having misconceptions. There should be a concerted effort to make the science curriculum more consistent and coherent across the grade levels.

Optimization of Fuel-cell stack design using CFD-ACE (CFD-ACE를 이용한 연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.14-18
    • /
    • 2003
  • Feul-cell system consists of fuel reformer, stack and energy translator. Among these parts, slack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack, and control of coolant are needed. Especially, water or air is used as a coolant to dissipate heat. The different temperature of each electric cells after cooling and the high temperature of the stack affect the performance of the stack, Therefore, it is necessary that the relationship between coolant, healing rate, width of slack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

  • PDF

Performance evaluation of bubble pump used on solar water heating system

  • Xuesong, Li;Park, Gi-Tae;Kim, Pil-Hwan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.416-422
    • /
    • 2007
  • The application analysis of bubble pump on the domestic solar water heater system is presented. The system investigated in this study is a passive device, self pumping and self regulating. It was test to use the bubble pump on solar water heater system. The test experiment has been taken on the existed vacuum tube about the efficiency, working fluid temperature and pressure and circulated power. In order to check the working temperature and working pressure effectively, the bubble pump was test separated from the solar water heater. The equipment consists of the bubble pump, heater and heat exchanger. The main structure of bubble pump was design depend on the character of two phase flow. The complete system was instrumented to measure pressures, temperatures and their relationship with the solar radiation intensity. The theory analysis of design bubble pump has been given and the experiment result analysis has been included in the paper.

  • PDF

Variations in Catches of Fisheries according to the Climate Change of Korea (우리나라에서 기후 변화에 따른 어업 생산량의 변동)

  • Kim, Jong-Gyu
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.194-201
    • /
    • 2022
  • Purpose: This study investigated the relationship between climate factors and the catches in Korean offshore fisheries in recent three decades (1981 to 2010). Method: This study focused on seven types of fish species preferred in Korean cuisine. In the study, 10-year moving averages were used so that long-term trends could be easily identified. Results: Both air temperature and sea surface temperature (SST) on the coast of Korea rose in the period (p < 0.05). The rise in SST was significantly correlated with the rise in air temperature (p < 0.05), but not with precipitation. In the 2010s compared to in the 1981, catches of anchovy and squid greatly increased (p < 0.05), while catches of Alaska / walleye pollock has been almost extinct over the past 30 years. As such, cold-water fish species decreased or disappeared, and their fishing ground was replaced by warm-water fish species. Conclusions: These findings indicate that fish species caught in offshore fisheries of Korea have changed due to climate change, especially warming. This suggests that the warming of the Korean Peninsula may have a significant impact on the supply of fishery products and food security to Koreans in the near future.

Estimation of Air Temperature Changes due to Future Urban Growth in the Seoul Metropolitan Area (수도권지역 미래 도시성장에 따른 기온변화 추정)

  • Kim, Yoo-Keun;Kim, Hyun-Su;Jeong, Ju-Hee;Song, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.237-245
    • /
    • 2010
  • The relationship between air temperatures and the fraction of urban areas (FUA) and their linear regression equation were estimated using land-use data provided by the water management information system (WAMIS) and air temperatures by the Korea Meteorology Administration (KMA) in the Seoul metropolitan area (SMA) during 1975 through 2000. The future FUA in the SMA (from 2000 to 2030) was also predicted by the urban growth model (i.e., SLEUTH) in conjunction with several dataset (e.g., urban, roads, etc.) in the WAMIS. The estimated future FUA was then used as input data for the linear regression equation to estimate an annual mean minimum air temperature in the future (e.g., 2025 and 2030). The FUA in the SMA in 2000 simulated by the SLEUTH showed good agreement with the observations (a high accuracy (73%) between them). The urban growth in the SMA was predicted to increase by 16% of the total areas in 2025 and by 24% in 2030. From the linear regression equation, the annual mean minimum air temperature in the SMA increased about $0.02^{\circ}C$/yr and it was expected to increase up to $8.3^{\circ}C$ in 2025 and $8.7^{\circ}C$ in 2030.

A Study on Indoor Radon Concentrations in Urban Area (도시 일부지역에서의 실내 라돈농도에 관한 연구)

  • 김순애;백남원
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.89-98
    • /
    • 2002
  • This study was taken in general hospital, hotel, shopping center, underground cafe, school, house, for the purpose of investigating the distribution of indoor radon concentration in urban area, by E-PERM which approved U.S. EPA, between August and November 1999. There are two sampling Places were exceed 148 ㏃/㎥(4 pCi/L; U.S EPA remedial level), difference mean is 24.0㏃/㎥ when compared with underground vs. aboveground indoor radon concentration in the same building and ratio is 1.6, so underground area is higher than aboveground (p<0.05). Influencing factors were examined. They related to the location of sampler(detector) open or near the door is lower radon concentration than inside portion, which explains probably open area has better ventilated air and dilutes indoor radon concentration. Temperature has a negative relationship (p<0.05) with indoor radon concentration and relative humidity has a positive (p<0.05) Simultaneously to investigate water radon concentration, collected piped-water and the results were very low, which is the same in piped-water concentration other countries. In conclusion, underground indoor radon concentration is higher than aboveground. Concentration was related to sampling spot, open portion is lower than inside. Higher the temperature, lower the indoor radon concentrations. On the other hand higher the relative humidity, higher the indoor radon concentrations. Indoor radon concentration is influenced by sampling point, temperature, relative humidity.

Influence of extreme curing conditions on compressive strength and pulse velocity of lightweight pumice concrete

  • Anwar Hossain, Khandaker M.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.437-450
    • /
    • 2009
  • The effect of six different curing conditions on compressive strength and ultrasonic pulse velocity (UPV) of volcanic pumice concrete (VPC) and normal concrete (NC) has been studied. The curing conditions include water, air, low temperature ($4^{\circ}C$) and different elevated temperatures of up to $110^{\circ}C$. The curing age varies from 3 days to 91 days. The development in the pulse velocity and the compressive strength is found to be higher in full water curing than the other curing conditions. The reduction of pulse velocity and compressive strength is more in high temperature curing conditions and also more in VPC compared to NC. Curing conditions affect the relationship between pulse velocity and compressive strength of both VPC and NC.

A Study on the Optimization of Fuel-Cell Stack Design (연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.92-96
    • /
    • 2003
  • Feul-Cell system consists of fuel reformer, stack and energy translator. Among these parts, stack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack and control of coolant are needed. Especially, oater or air is used as a coolant to dissipate heat. The different temperature of each electric cell after cooling affects the performance of the stack. Therefore, it is necessary that the relationship between coolant hearing rate, width of stack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.