• Title/Summary/Keyword: Wastewater effluent

Search Result 878, Processing Time 0.028 seconds

Analysis and Quantification of Ammonia-Oxidizing Bacteria Community with amoA Gene in Sewage Treatment Plants

  • Hong, Sun Hwa;Jeong, Hyun Duck;Jung, Bongjin;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1193-1201
    • /
    • 2012
  • The analysis and quantification of ammonia-oxidizing bacteria (AOB) is crucial, as they initiate the biological removal of ammonia-nitrogen from sewage. Previous methods for analyzing the microbial community structure, which involve the plating of samples or culture media over agar plates, have been inadequate because many microorganisms found in a sewage plant are unculturable. In this study, to exclusively detect AOB, the analysis was carried out via denaturing gradient gel electrophoresis using a primer specific to the amoA gene, which is one of the functional genes known as ammonia monooxygenase. An AOB consortium (S1 sample) that could oxidize an unprecedented 100% of ammonia in 24 h was obtained from sewage sludge. In addition, real-time PCR was used to quantify the AOB. Results of the microbial community analysis in terms of carbon utilization ability of samples showed that the aeration tank water sample (S2), influent water sample (S3), and effluent water sample (S4) used all the 31 substrates considered, whereas the AOB consortium (S1) used only Tween 80, D-galacturonic acid, itaconic acid, D-malic acid, and $_L$-serine after 192 h. The largest concentration of AOB was detected in S1 ($7.6{\times}10^6copies/{\mu}l$), followed by S2 ($3.2{\times}10^6copies/{\mu}l$), S4 ($2.8{\times}10^6copies/{\mu}l$), and S3 ($2.4{\times}10^6copies/{\mu}l$).

Automatic Control Of Dissolved Oxygen In Activated Sludge Aeration Tank

  • Park, Kwang-Soo;Heo, Nam-Hyo;Lee, Hae-Goon;Han, Gee-Baek;Kim, Chang-Won
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.113-119
    • /
    • 1999
  • The quality of the effluent from an activated sludge aeration tank can deteriorate when the substrate removal rate decreases due to an abrupt reduction in the DO concentration, which is affected by such operating conditions as the loading rate, temperature, wastewater composition, and so on. In this research, a DO control system that includes a PI (proportional-integral) controller/Hiraoka controller was developed and applied to a pilot-scale activated sludge process, then its acceptability was estimated. The applicability of the respiration rate to DO control was also estimated. The respiration rate indicated a variety of input organic loading rates, which is the main disturbance to the DO concentration in an aeration tank. When the influent concentration incrementally decreased and increased between CODcr 1,000 mg/l and 100 mg/l, the control system with a PI controller exhibited a good llperformance-the average DO concentrations were 2.00$\pm$0.14 mg/l and 1.88$\pm$0.15 mg/l (set value was 2.0 mg/l), respectively, and the settling time was just 10 minites. When the control system was operated for 4 days, the DO concentration was 1.99$\pm$0.18 mg/l and 32.6% of the air flowrate was saved. However, the fluctuations in the respiration rates and air flowrates were severe, which could be harmful to the stability of the biomass and mechanical stability of the blower. A possible approach to solve this problem may be the simultaneous control of the loading rate and DO concentration.

  • PDF

Analysis of UV Filters in Water using Stir Bar Sorptive Extraction (SBSE) and GC/MS-MS (교반막대 추출법과 GC/MS-MS를 이용한 수중의 자외선 차단제 분석)

  • Seo, Chang-Dong;Son, Hee-Jong;Jung, Jong-Moon;Choi, Jin-Taek;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1037-1047
    • /
    • 2014
  • A highly sensitive analytical method based on stir bar sorptive extraction (SBSE) technique and gas chromatography/tandem mass spectrometry (GC/MS-MS) has been developed, allowing the simultaneous multi-analyte determination of seven UV filters in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 40 mL of water sample at pH 3 and stirred at 1,100 rpm for 120 min. Other SBSE parameters (salt effect and presence of organic solvent) were optimised. The method shows good linearity (coefficients > 0.990) and reproducibility (RSD < 12.9%). The extraction efficiencies were above 84% for all the compounds. The limits of detections (LOD) and limits of quantification (LOQ) were 2.1~8.6 ng/L and 6.8~27.5 ng/L, respectively. The developed method offers the ability to detect 8 UV filters at ultra-low concentration levels with only 40 mL of sample volume. Matrix effects in tap water, river water, wastewater treatment plant (WWTP) final effluent water and seawater were investigated and it was shown that the method is suitable for the analysis of trace level of 7 UV filters except of benzophenone (BP). The method developed in the present study has the advantage of being rapid, simple, high-sensitive and both user and environmentally friendly.

Isolation, identification and immobilized-cell characteristics of a bacterium that produces $N_2$ from $NH{_4}{^+}$ under an aerobic condition

  • Park, Kyoung-Joo;Cho, Kyoung-Sook;Kim, Jeong-Bo;Lee, Min-Gyu;Lee, Byung-Hun;Hong, Young-Ki;Kim, Joong-Kyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.450-455
    • /
    • 2005
  • To treat wastewater efficiently by a one-step process of nitrogen removal, a new strain of $N_2-producing$ bacteria from $NH{_4}{^+}$ under an aerobic condition was isolated and identified. By 16S-rDNA analysis, the isolate was identified as Enterobacter asburiae with 96% similarity. The isolate shows that the capacity of $N_2$ production under an oxic condition was approximately three times higher than that under an anoxic condition. The optimal conditions (pH, temperature and C/N ratio) of the immobilized isolate for $N_2$ production were found to be 7.0, $30^{\circ}C$ and 5, respectively. Under all the optimum reaction conditions, the removal efficiency of $COD_{Cr}$ and TN reached 56.1 and 60.9%, respectively. The removal rates of $COD_{Cr}$ and TN were highest for the first 2.5 hrs (with the removal $COD_{Cr}$ ratios of 32.1), and afterwards the rates decreased as reaction proceeded. For application of the immobilized isolate to a practical process of ammonium removal, a continuous bioreactor system exhibited a satisfactory performance at HRT of 12.1 hr, in which the effluent concentrations of $NH{_4}{^+}-N$ was measured to be 15.4 mg/L with its removal efficiency of 56.0%. The maximum removal rate of $NH{_4}{^+}-N$ reached 1.6 mg $NH{_4}{^+}-N/L/hr$ at HRT of 12.1 hr (with N loading rate of 0.08 $Kg-N/m^3-carrier/d)$. As a result, the application of the immobilized isolate appears a viable alternative to the nitrification-denitrification processes.

  • PDF

Operation Mode in Sequencing Batch Reactor for Nitrogen Removal (질소제거를 위한 연속회분식 반응조의 운전방식 연구)

  • Shin, Hang Sik;Kwon, Joong Chun;Koo, Ja Kong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.77-88
    • /
    • 1988
  • This research investigated the effect of COD/N ratio on nitrogen removal, and the use of organics in raw wastewater as a carbon source for denitrification in SBR(Sequencing Batch Reactor) systems. Four laboratory scale reactors were operated in three modes. Only the difference between modes were; Mode I operated in aerated condition during fill while Mode II in anoxic condition and Mode III operated on two fills per cycle in anoxic condition. When COD/N ratio increased, total nitrogen removal efficiencies increased from 8.7 to 57.7 percent in Mode I, from 28.9 to 83.2 percent in Mode II and from 42.7 to 97.8 percent in Mode III, respectively. COD removal efficiencies ranged from 93 to 98 percent throughout the study. SBR operation in Mode III of feeding twice per cycle in anoxic condition was an effective operating method for nitrogen removal and nitrogen concentration in effluent can be estimated using influent COD and nitrogen concentrations.

  • PDF

A study on treatment of emulsified oil waste water in vessels by electrochemical treatment system (전기화학적 처리장치에 의한 유화된 선저폐수의 처리에 관한 연구)

  • Kwon K. S.;Jeong H. J.;Lee B. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • Discharging untreated bilge to the ocean is a cause of marine pollution. In general, bilge water contains free and/or emulsified forms of oil. Free form of oil can easily be separated by gravimetric flotation and/or proper filtration processes. However, those simple physicochemical processes could not separate emulsified oil without adding proper chemicals. Electrolytic flotation is one of promising technologies able to fulfill the effluent standard requirement, which is below 15 ppm of oil content. In this research, Electrochemical process consisting of electrochemical flotation basin was studied for the treatment of emulsified oil. In order to estimate, the effectiveness of oil separation equipment influent concentration of oil and HRT(Hydraulic retention time) were considered. Also, lab-scale electrochemical process was designed and operated in the condition of various HRT, current density, and electrode gap. Through the research, following results were obtained. From the experiment of bench scale electrochemical treatment process, it was demonstrated that the emulsified oil was treated effectively and the removal efficiency of emulsified oil from wastewater was increased with HRT and current density.

  • PDF

Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(I) Model Development and Verification (토양/대수층 처리(soil aquifer treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(I) 모델 개발 및 검증)

  • Kim Jung-Woo;Kim Jeong-Kon;Cha Woo-Suk;Choi Hee-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.9-15
    • /
    • 2005
  • Soil aquifer treatment is a water reuse technology that secondary or tertiary treated wastewater is infiltrated into the aquifer in which physical and biochemical reactions occur. Major consideration in SAT is the removal and transport of DOC and nitrogen species. In this study, reaction mechanism in SAT was examined considering nitrification, denitrification and organic oxidation. In addition, SAT modeling system was developed as the reaction mechanism was applied to groundwater flow and transport model. In verification of the reaction module by 1-dimensional unsaturated soil column test, the experimental data of all of the species, ammonium, nitrate, DOC and DO, were well matched with the simulation results. In sensitivity analysis, ammonium partition coefficient, dissolved oxygen inhibition constant and biomass decay rate affect ammonium, DOC and DO concentration of effluent, respectively.

Evaluation of Water Quality Goal and Load Allocation Achievement Ratio in Guem River Total Maximum Daily Loads for the 1st Phase (금강수계 1단계 수질오염총량관리제의 목표수질 및 할당부하량 달성도 평가)

  • Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.859-865
    • /
    • 2012
  • It is necessary to evaluate performances hitherto carried out in the management of Total Maximum Daily Loads (TMDLs) and to set up direction so that this system can be improved continuously in the future. This study was investigated load allocation achievement ratio, water quality goal achievement ratio and interrelation between water quality goal and load allocation for the first period (2004~2010). Load allocation achievement and BOD water quality goal achievement ratio were 50% and 73% in Guem River Basin, respectively. The main reason for excess of load allocation and shortfall of water quality goal were unfulfilled reduction plan and pollution sources increment. Therefore, it is necessary to develop enhanced pollution sources prediction method and make a list realizable reduction plan. 63% of the unit watershed was not interrelation between water quality goal and load allocation. The reason why water quality goal and load allocation had not correlation were water quality of upper unit watershed, increment of inflow quantity, effluent water quality of wastewater treatment plant affected the unit watershed, increment of inner productivity by algae, water quality deterioration during the specific period, river management flow, etc.

Improvement of Single Anaerobic Reactor for Effective Nitrogen Removal (효율적 질소제거를 위한 단일 혐기성반응조의 개선)

  • 한동준;류재근;임연택;임재명
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 1997
  • This research aims to remove nitrogen in the piggery wastewater by combined process with upflow anaerobic sludge blanket (UASB) and biofilm process. For the effective denitrification. anaerobic and anoxic reactors were connected to a reactor. The effluent of aerobix reactor was recycled equally with influent in the upper filter of anaerobic reactor for denitrification and outlet of UBF reactor was connected to the settling tank with $1.5{\;}{\ell}$ capacity and the settling sludge was repeatedly recycled to UASB zone. The organic loading rate of total reactor was operated from 0.4 to $3.1kgCOD/m^{3}/d$ and it was observed that the removal rate of TCOD was 80 to 95 percentage. Ammonia nitrogen was removed over 90 percentage in the less volumetric loading rate than $0.1{\;}kgN/m^{3}/d$. But because of non-limitation of organic materials, it was reduced to 70 percentage in the more volumetric loading rate than $0.6{\;}kgN/m^{3}/d$. But denitrification rate was observed 100 percentage in the all of loading rate. This is caused by the maintenance of optimum temperature, sufficient carbon source, and competition of electron acceptors. The results of COD mass balance at the $1.21{\;}kgCOD/m^{3}/d$ was observed with the 71.7% percentage of influent COD. It was revealed that the most part of organic materials was removed in the aerobic and the anaerobic reactor because 38.4 percentage was conversed into $CH_{4}$ gas and 11 percentage was removed in the aerobic reactor with cell synthesis and metabolism. Besides, 5.7% organics was used to denitrification reaction and 3.7% organics related to sulfate reduction.

  • PDF

Construction of Long-term Load Duration Curve Using MOVE.2 Extension Method and Assessment of Impaired Waterbody by Flow Conditions (MOVE.2 확장기법 적용을 통한 장기 부하지속곡선 구축 및 유황조건별 수체손상평가)

  • Kim, Gyeonghoon;Kwon, Heongak;Im, Taehyo;Lee, Gyudong;Shin, Dongseok;Na, Seungmin
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • The purpose of this study is to evaluate on the applicability of Load Duration Curve (LDC) method using Maintenance of Variance Extension types 2 method and sampling data for efficient total maximum daily loads at the Nakbon-A unit watershed in Korea. The LDC method allows for characterizing water quality data such as BOD, TOC, T-N and T-P in this study at different flow regimes(or quarters). BOD usually exceeded the standard value (exceedance probability 50%) at low flow zone. On the other hand, TOC, T-N, T-P usually exceeded the standard value at dry and low flow zone. Seasonally all water quality variables usually exceeded the standard value at Q1(Jan-Mar) and Q2(Apr-Jun) zones. Improvement of effluent control from wastewater treatment plants are effective to improve BOD and T-P.