• Title/Summary/Keyword: Wasted fuel cell

Search Result 4, Processing Time 0.023 seconds

A study on the power plant system combined with PEM fuel cell and the wasted hydrogen from the sea water electrolyzer of nuclear power plants (원자력 발전소의 해수전해설비 폐수소를 활용한 PEM 연료전지 발전 시스템에 관한 연구)

  • Choi, Jongwon;Lee, Juhyung;Cha, Sukwon;Kim, Minsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.124.2-124.2
    • /
    • 2010
  • Generally, a coolant of the nuclear power plant is manufactured by electrolyzing the sea water near the plant for making the sodium hypochlorite(NaOCl), which is used for sterilizing the bacteria and the shellfishes sticking to the drains or the pumps at the outlet of the cooling system due to $8-10^{\circ}C$ warmer temperature than the inlet sea water. During manufacturing the sodium hypochlorite, the hydrogen with the high purity is also produced at the anode side of the electrolyzer. This paper describes a novel power plant system combined with the polymer electrolyte membrane(PEM) fuel cell, the wasted hydrogen from the sea water electrolyzer and the wasted heat of the nuclear power plant. The present status over the exhausted hydrogen at twenty nuclear power plants in Korea was investigated in this study, from which an available power generation is estimated. Furthermore, the economic feasibility of the PEM fuel cell power plant is also evaluated by a current regulations over the power production and exchange using a renewable energy shown in Korea Power Exchange(KRX).

  • PDF

Properties of Impurities Removal for Reclaiming Valuable Metal from Wasted Fuel cell (폐연료전지로부터 회수된 희유금속에서 불순물 제거 특성)

  • Kim, Youngae;Kwon, Hyunji;Koo, Jeongboon;Kwak, Inseob;Sin, Jangsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.198.1-198.1
    • /
    • 2010
  • 고분자전해질 연료전지(PEMFC)의 핵심부품인 스택의 MEA는 전극과 멤브레인 전해질, GDL(Gas Diffusion Layer)로 구성되며, 전극은 Anoth극과 Cathod극으로 나뉘어 각각의 전극 특성에 적합한 전극촉매를 적용하게 된다. Anoth극과 Cathod극은 탄소 지지체 위에 원하는 사양의 희유금속이 도포되어 존재하는데 이들 희유금속은 그 희귀성으로 인해 사용 후 반드시 재사용되어야 한다. 사용된 전극에서의 희유금속 회수는 산침출, 불순물제거, 추출, 탈거 공정으로 이루어지며, 산침출 시 산화제로 사용된 NaOCl로 인한 침출용액 내의 Na+ 이온의 증가는 불순물제거 공정에 의해 반드시 제거되어야 한다. 따라서 본 연구에서는 CCG 방식으로 전극촉매를 GDL에 코팅한 MEA로부터 백금족 희유금속을 회수 시 MEA에 포함되어 있는 소량의 불순물을 제거하고자 한다.

  • PDF

A Computational Study of the Fuel-Cell Ejector System (연료전지 이젝터 시스템에 관한 수치해석적 연구)

  • Lee, Jun-Hee;Lee, Hae-Dong;NamKoung, Hyuck-Joon;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3191-3196
    • /
    • 2007
  • The present study addresses a method to operate a fuel-cell system effectively using a recirculation ejector which recycles wasted hydrogen gas. Configuration of a recirculation ejector is changed to investigate the flow behavior through it under varying operating conditions, and how such conditions affect the fuel-cell hydrogen cycle. The numerical simulations are based on a fully implicit finite volume scheme of the axisymmetric, compressible, Reynolds-Averaged, Navier-Stokes equations for hydrogen gas, and are compared with available experimental data for validation. The results show that a hydrogen recirculation ratio is effectively controlled by a configurational alteration within the operational region in which the recirculation passage doesn't plugged by a sonic line.

  • PDF

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF