• Title/Summary/Keyword: Waste-to-Energy

Search Result 2,689, Processing Time 0.033 seconds

The Economic Impact of Contaminated and Noxious Sites : A Meta Analysis (오염-유해시설의 경제적 영향 : 메타분석)

  • Won, Doo Hwan
    • Environmental and Resource Economics Review
    • /
    • v.17 no.1
    • /
    • pp.165-196
    • /
    • 2008
  • This paper reports a quantitative meta analysis of the economic impacts of localized noxious and contaminated sites. Using either hedonic property value or stated preference methods, economists have studied the effects of contamination or noxious activities, or the benefits realized from their elimination, on real estate prices at more than 40 sites. In support of wise public and private investments in environmental quality, most of these studies aim to inform decision makers about the benefits of remediation and cleanup. Their results vary considerably, but there has been no previous systematic effort to analyze the differences and identify shared insights. This study uses established methods of meta analysis to identify points of agreement and differences in this body of literature. The studies are characterized by the type of site, modeling approach, geographic extent of impacts, data features, and other key factors that underlie their value estimates. The impact estimates are normalized as proportional effects on property values. This study attempts to discover whether the estimated economic impacts of contamination or noxious activity differ according to these characteristics of the studies, and whether anything general can be said about the economic consequences of site contamination and remediation. Bivariate, multivariate, and logit techniques are applied to the data. The results suggest that the property value is the most sensitive to water base contamination, published case studies result in systematically greater environmental value than those in unpublished reports, and real estate markets show responses to environmental condition changes.

  • PDF

A Sustainability Study Based on Farm Management Value-Chain Structure (농업경영의 가치사슬 구조에 근거한 지속가능성 연구)

  • Cheong, Hoon-Hui;Kim, Sa-Gyun;Heo, Seoung-Wook
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.2
    • /
    • pp.363-384
    • /
    • 2009
  • This study aimed at finding directions for Korean agriculture to establish a new paradigm of sustainable development. Various problematic issues and concerns in the environment necessitate the transformation of Korea's development paradigm from unconditional growth to "Green Growth" through new policies on green value and review of various advanced researches. In this research, the environment-friendly agriculture's problems, particularly in agribusiness were analyzed. Drawing from Michael Porter's Value Chain Analysis, this research developed a value chain model in agriculture that reflects the environment and the present situations. Future directions in the agriculture sector were also discussed. Korea realized food self-sufficiency through the green revolution in the early 1970s. However, a lot of problems have also occurred, including ground and water pollution and the destruction of ecosystems as a result of the overuse of pesticides and chemical fertilizers. In the late 1970s, the growing interest on environment-friendly agriculture led to the introduction of sustainable methods and techniques. Unfortunately however, these were not innovative enough to foster environment-friendly agriculture. Thereafter, the consumers' distrust on agricultural products has worsened and concerns about health have increased. In view of this, the Ministry of Food, Agriculture, Forestry and Fisheries introduced in December 1993 a system of Quality-Certified Products for organic and pesticide-free agri-foods. Although a fundamental step toward the sustainability of the global environment, this system was not enough to promote environment-friendly agriculture. In 2008, Korea's vision is for "Low Carbon Green Growth" to move forward while also coping with climate change. But primary sectors in a typical value chain do not consider the green value of their operations nor look at production from an environmental perspective. In order to attain sustainable development, there is a need to use less resources and energy than what is presently used in Korean agricultural and value production. The typical value chain should be transformed into a "closed-loop" such that the beginning and the end of the chain are linked together. Such structure allows the flow of materials, products and even wastes among participants in the chain in a sustained cycle. This may result in a zero-waste sustainable production without destroying the ecosystem.

  • PDF

A Study on the RDF Manufacturing of Coffee grounds by using Pilot scale Oil-drying Equipment (Pilot scale 유중건조 장비를 이용한 커피찌꺼기의 고형연료화 연구)

  • Kwon, Ik-Beom;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.443-450
    • /
    • 2019
  • We studied to find the optimal manufacturing conditions of coffee grounds sludge RDF with oil drying method. We expanded the lab scale to pilot scale to compare the efficiency of the oil-drying equipment and The selection of the ratio of coffee grounds and oil, the setting temperature, and the temperature change and water content with time were measured. In order to analyze the characteristics of the research results, characteristics of solid fuels produced(Coffee grounds of oil-dried) by calorimeter, TGA, combustion equipment, and combustion gas measuring instrument were analyzed. As a result, the ratio of oil to coffee grounds was 4: 1, and when the setting temperature was set to $300^{\circ}C$, the water content reached 10wt.% or less within 20 minutes. ln addition, it showed high calorific value of 6,273kcal/kg. However, coffee grounds had a similar composition to wood and showed high luminance and produced a lot of CO in combustion gas. As a result, it is considered to be unsuitable for thermoelectric power plant and camping fuel, but the initial ignition speed is high and the heat generation is high, so it is considered that it can replace the fuels for current use.

Environmental Impact Assessment of EPS Box for Fresh Food in Korea and Europe (한국과 유럽의 신선식품용 EPS박스에 대한 전과정 환경영향평가)

  • SY, Kim;CHAROENSRI, KORAKOT;YJ, Shin;HJ, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.201-210
    • /
    • 2022
  • Expanded polystyrene (EPS) is the most commonly used fresh food refrigeration insulation in Korea and Europe. Moreover, as the use of disposable packaging materials has increased significantly along with non-face-to-face delivery services since the COVID-19 crisis, social issues related to waste disposal are also being raised. Therefore, in this study, the life cycle of EPS boxes for fresh food is focused on the factors that have a large difference between incineration and landfill including recycling in Europe and Korea in the disposal process after use, and raw materials and energy in the manufacturing process, which account for a large portion of the environmental impact value. We tried to compare the environmental impact of evaluation. Overall, the raw material production stage, box manufacturing stage, and packaging stage have similar processes in Europe and Korea, but unlike Europe, Korea, which lacks landfills and incineration facilities, has focused on expanding the recycling rate. It was necessary to do an environmental impact assessment. Data affecting the environment were derived based on 2019 and 2020 data for Korea and 2017 and 2020 data for Europe. In order to predict the future environmental impact assessment, assumptions about the disposal rate in 2025 and 2030 were introduced and evaluated. As a result of this study, it was found that the raw material production stage of EPS boxes, which have similar processes in both Korea and Europe, has the greatest effect on the global warming effect of Korean EPS boxes. However, Korea, which has a relatively high recycling rate in the disposal process compared to incineration and landfill, showed better environmental performance than Europe in most impact indicators except freshwater eutrophication. In particular, Korea has increased the overall recycling rate compared to Europe by replacing various recyclable materials such as building materials and sundries with XPS (extruded polystyrene) recycled materials. In conclusion, it was found that increasing the recycling rate rather than incinerating and landfilling EPS boxes for fresh food in the domestic EPS industry has relatively less environmental load compared to Europe.

Shear Strength of Interface between Natural Aggregate Concrete and Recycled Aggregate Concrete (천연골재 콘크리트와 순환골재 콘크리트 접합면의 전단강도)

  • Moon, Hoon;Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo;Kim, Young-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.26-32
    • /
    • 2020
  • Concrete recycling is becoming mandatory rather selective due to depletion of constructional materials and increase of concrete waste. Studies on recycling concrete are conducted in various point of view for long time. However, standard or guideline of many countries for the application of recycled aggregate concrete(RAC) has restrictions such as low replacement rate of coarse aggregate and no fine aggregate allowed due to inferior material properties of recycled aggregate. This study intends to figure out the feasibility of casting natural aggregate concrete(NAC) and RAC separately in a structural member. In making RAC, replacement rate of coarse aggregate was 50, 100% in RAC and treatment of interface of two concretes is introduced. RAC treatment of recycled aggregate or inclusion of additives was not done as it can increase embodied energy of concrete work. Double-shear test with uniformly distributed loading was adopted to evaluate shear strength at the interface of two concretes. After curing it was hard to distinguish interface of two concretes. Experimental result revealed that specimen with higher replacement rate showed higher shear-to-compressive strength ratio, which is possibly attributed to coarse aggregate size and roughness of sheared section. Further study on the effect of various parameters is required and subsequent research activity is on-going.

Practical Radiation Safety Control: (II) Application of Numerical Guidance for the Discharges of Radioactive Gaseous and Liquid Effluents (방사선안전관리 실무: (II) 배기중 및 배수중 배출관리기준의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.61-64
    • /
    • 2014
  • Radioactive materials are in use and have many applications from the generation of electricity to the purposes of research, industry and medicine such as diagnosis and therapy. In the course of their use some of radioactive substances may be discharged into the environment from facilities using the unsealed radioactive materials, which are main artificial sources occurring the public exposure. Discharges are in the form of gases, particles or liquids. This paper provides procedures to estimate the level of the public exposure based on the conservative assumptions and simple calculations in the facility using unsealed liquid sources. They consist of two processes; (1) to calculate maximum concentration of gaseous effluents discharged through the exhaust pipe and average concentration of liquid effluents discharged through the drain of the storage tank, (2) to compare each of them to numerical guidances for the discharges of radioactive gaseous and liquid effluents mentioned in the related notification. For this purpose followings are assumed properly; daily usage, form and dispersion rate of radionuclides, daily amount of radioactive liquid waste and exhaust and drainage equipment. The procedures are readily applicable to evaluate environmental effects by planned effluent discharges from facilities using the unsealed radioactive materials. In addition they may be utilized to obtain practical requirements for radiation safety control necessary for the reductions of the public exposure.

Calculation of the Correction Factors related to the Diameter and Density of the Concrete Core Samples using a Monte Carlo Simulation (몬테카를로 전산해석을 이용한 콘크리트 코어시료의 직경과 밀도에 따른 보정인자 계산)

  • Lee, Kyu-Young;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete is one of the most widely used materials as the shielding structures of a nuclear facilities. It is also the most generated radioactive waste in quantity while dismantling facilities. Since the concrete captures neutrons and generates various radionuclides, radiation measurement and analysis of the sample was fulfilled prior to dismantle facilities. An HPGe detector is used in general for the radiation measurement, and effective correction factors such as geometrical correction factor, self-absorption correction, and absolute detector efficiency have to be applied to the measured data to decide exact radioactivity of the sample. Correction factors are obtained by measuring data using a standard source with the same geometry and chemical states as the sample under the same measurement conditions. However, it is very difficult to prepare standard concrete sources because concrete is limited in pretreatment due to various constituent materials and high density. In addition, the concrete sample obtained by core drill is a volumetric source, which requires geometric correction for sample diameter and self absorption correction for sample density. Therefore in recent years, many researchers are working on the calculation of effective correction factors using Monte carlo simulation instead of measuring them using a standard source. In this study we calculated, using Geant4, one of the Monte carlo codes, the correction factors for the various diameter and density of the concrete core sample at the gamma ray energy emitted from the nuclides 152Eu and 60Co, which are the most generated in radioactive concrete.

Developing Wastepaper Demand-Supply Model and Policy Measures to Increase Wastepaper Recycling Rate (폐지시장(廢紙市場)의 수요(需要)·공급(供給) 모델의 개발(開發)과 회수율(回收率) 제고방안(提高方案))

  • Choi, Kwan;Han, Sang-Yoel
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.133-147
    • /
    • 1994
  • Wastepaper recycling has significant implications not only in providing scarce raw material input for the paper industry but in environmental concerns such as reducing solid waste disposal, energy conservation and preservation of forest resources. The objectives of this study was (1) to develop an econometric model of demand for and supply of wastepaper, (2) to forecast wastepaper consumption and price to the year 2000 applying the econometric models estimated and (3) to estimate the elasticity of variables which are included in the wastepaper supply and demand equations. In this study wastepaper was classified into three groups, old newsprint, old corrugated and mixed For each group such as demand and supply equation were estimated. The demand equations were estimated as a function of paper and paper product consumption and wholesale price index and supply equations as a function of wastepaper price, one year lagged paper and paperproduct consumption and transportation price. Applying the econometric models to forcasting results in the future consumption and supply of wastepaper projected as 11.645 million MT and 7.396 million MT in 2000, respectively. The rate of wastepaper self-supply is forcasted about 63.5% in 2000. Especially, the rate of old neswprint self-supply is predicted about 16% which means about 2.2 million MT of old newsprint should be imported from foreign countries. Lastly, some policy measures to promote wastepaper recycling rate based upon economic and physical characteristics of wastepaper and market structure are suggested.

  • PDF

The Function or Urban River and Sustainable Regional Development : The Case of Kumho River (도시하천과 지속가능한 지역 발전 : 금호강을 중심으로)

  • Choi, Byung-Doo
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.4
    • /
    • pp.757-774
    • /
    • 2004
  • This paper is to reclassify systematically the functions of urban river: that is, water supply, land management, transportation and energy source as social and economic function; formation of geomorphic surface, water-side landscape, community constitution and boundary and separation between regions as spatial function; and drainage of waste water, purification, habitation, and weather regulation as ecological function. On the basis of this reclassification, it can be argued that the socio-economic functions (eg. water supply) of the river among the functions of the river have been strongly mobilized in the process of modernization, while the spatial function and ecological function of urban river have been ignored. The Kumho river which flows through Daegu and the adjacent area has made a great contribution to the modem development process of the river basin area, but as a result of a selective development of a specific function of the river, that is the social and economic function, it now suffers from the lack of instream flow and is deprived of its original functions with the water pollution and degradation. Moreover the Daegu region seems no longer possible to develop on the dependence of the river. In order to overcome this kind of social and environmental crisis, this paper is to suggest both some principles and main evaluating indicators to restore the original and comprehensive functions of the river, and important measures to make the co-evolution of the city and the river possible.

  • PDF

A Study on the Nitrate Removal in Water by Chelating Bond of Calcium Alginate (Calcium Alginate의 킬레이트 결합을 이용한 수중의 질산성 질소 제거에 관한 연구)

  • Kim, Tae Kyeong;Song, Ju Young;Kim, Jong Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.795-801
    • /
    • 2016
  • This study is on the denitrification process using the sodium alginate and $CaCl_2$ as a flocculant. Removal techniques of nitrate nitrogen from waste water are reverse osmosis, ion exchange, electro dialysis and biological method etc. We tried to remove nitrate nitrogen with flocculation and sedimentation method in the present study. Calcium alginate is expected to form a chelate bond with nitrate nitrogen in the solution. So the effects of flocculantt component, flocculation reaction time, molar ratio of the flocculant, flocculant injection rate are studied to determine the best removal rate of nitrate nitrogen. In addition, we tried to determine the nitrate nitrogen removal mechanism by analyzing the structure and component ratio of the configuration after the agglutination precipitate by FE-SEM and EDS. As a result, the nitrate nitrogen removal mechanism is turned out to form calcium-nitro-alginate, and the best mole ratio of flocculating agent is 1 : 1, the injection rate of the flocculant was up to 2%, the removal rate of the nitrate nitrogen to be 56.7% in the synthetic wastewater.