• Title/Summary/Keyword: Waste yeast

Search Result 84, Processing Time 0.028 seconds

Production of Fermented Feed from Food Wastes by Using Inoculation (종균 첨가에 의한 음식물 찌꺼기의 발효 사료화)

  • Suh, Eun-Hee;Song, Eun-Seung;Han, Uok;Lee, Sung-Taek;Yang, Jae-Kyung;Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • The fermentative conversion of food wastes into feed was investigated by seeding of mixed inoculum YM (Youngjin Environmental co.), and thermotolerant yeast Kl. marxianus. For 6 days' fermentaion, the fermentation method of 2 days' aerobic followed by 4 days' anaerobic was better for the production of organic acids and increasing total microbial population than 6 days' continuous aerobic or anaerobic fermentation. By seeding YM, the total microbial count increased about 100 times of the control group. In addition, Kl. marxianus seeding together with YM increased total viable cell count, but did not increase yeast count significantly.

  • PDF

The Characteristic of Selective Attachment and Bioleaching for Pyrite Using Indigenous Acidophilic Bacteria at $42^{\circ}C$ ($42^{\circ}C$에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성)

  • Park, Cheon-Young;Kim, Soon-Oh;Kim, Bong-Ju
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.109-121
    • /
    • 2010
  • The bioleaching experiment under $42^{\circ}C$ was effectively carried out to leach the more valuable element ions from the pyrite in the Gangyang mine waste. Bacteria can survive at this temperature, as indigenous acidophilic bacteria were collected in the Hatchobaru acidic hot spring, in Japan. To enhance the bacterial activity, yeast extract was added to the pyrite-leaching medium. The indigenous acidophilic bacteria appeared to be rod-shaped in the growth-medium which contained elemental sulfur and yeast extract. The rod-shaped bacteria ($0.7\times2.6\;{\mu}m$, $0.6\times7\;{\mu}m$, $0.8\times5\;{\mu}m$ and $0.7\times8.4\;{\mu}m$) were attached to the pyrite surface. The colonies of the rod-shaped bacteria were selectively attached to the surroundings of a hexagonal cavity and the inner wall of the hexagonal cavity, which developed on a pyrite surface. Filament-shaped bacteria ranging from $4.92\;{\mu}m$ to $10.0\;{\mu}m$ in length were subsequently attached to the surrounding cracks and inner wall of the cracks on the pyrite surface. In the XRD analysis, the intensity of (111), (311), (222) and (320) plane on the bacteria pyrite sample relatively decreased in plane on the control pyrite sample, whereas the intensity of (200), (210) and (211) increased in these samples. The microbiological leaching content of Fe ions was found to be 3.4 times higher than that of the chemical leaching content. As for the Zn, microbiological leaching content, it was 2 times higher than the chemical leaching content. The results of XRD analysis for the bioleaching of pyrite indicated that the indigenous acidophilic bacteria are selectively attacked on the pyrite specific plane. It is expected that the more valuable element ions can be leached out from the mine waste, if the temperature is increased in future bioleaching experiments.

Studies on the Production of Foods and Feeds Yeast from the Hydrolyzate of Corn Starch Cake (옥수수 전분박(澱粉粕)을 이용(利用)한 식사료(食飼料) 효모생산(酵母生産)에 관한 연구(硏究))

  • Sung, Nack-Kie;Kim, Myung-Chan;Ki, Woo-Kyung;Kim, Jong-Kyu;Yun, Han-Dae
    • Applied Biological Chemistry
    • /
    • v.19 no.4
    • /
    • pp.219-226
    • /
    • 1976
  • To meet the need of protein feed and fine more efficient ways of returning waste to resources, we have carried out the study of the production of yeast for foods and feeds from the corn starch cake. The present study includes the method for acid-hydrolysis, the selection of yeast capable of utilizing hydrolyzate of the corn starch cake, and culture condition of Candida tropicalis under the liquid culture and the semisolid culture. Obtained results were as follows. 1. Hydrochloric acid was more excellent on the hydrolysis of the corn starch cake than sulfuric acid, and the yield of sugar was maximum, 57.2%, when the corn starch cake was hydrolyzed with 1.0% of hydrochloric acid at 2.0kg/cm for 30 minutes. 2. As the acid solution content was increased, more sugar was liberatedfrom the mixture, until the acid solution-substrate ratio reached 10:1. Beyond this point, no further increase was observed. To prepare the cultural medium of semisolid fermentation, a acid solution to substrate ratio of 3:1 appeared to be optimum. 3. Out of 6 yeast strains, Candida tropicalis had excellent growth on the hydrolyzate of the corn starch cake, and optimum temperature and initial pH were $30^{\circ}C$ and 6.0 respectively. 4. Optimum liquid medium of Candida tropicalis is ures 0.3%, potassium phosphate monobasic 0.15g and magnesium sulfate 0.04g in 100ml of the hydrolyzate of the corn starch cake, while optimum semisolid medium is ammonium chloride 0.4g, potassium phosphate monobasic 0.1%, magnesium sulfate 0.04%. 5. Candida tropicalis could assimilate the sugar in the hydrolyzate up to more than 88.75%, and a yield of dry yeast reached 19.13% to the corn starch cake under the liquid culture. 6. Compared to the that of the untreated corn starch cake, the cellulose content of the semisolid fermented cake decreased by 3.76% to 14.7%, whereas dry yeast contents increased by 13.89%.

  • PDF

Effect of Surface finishing method and sunning on top layer Kochuiang Quality during Aging (표면마감방법과 볕쪼임이 숙성중 표층 고추장 품질에 미치는 영향)

  • Kim, Joong-Man;Song, Hyun-Ju;Yang, Hee-Cheon
    • Journal of the Korean Society of Food Culture
    • /
    • v.8 no.3
    • /
    • pp.249-255
    • /
    • 1993
  • To minimize the waste amount of surface layer kochujang during aging, the effects of the three finishing methods(nothing, salt scatering and Polyethylene film on the kochujang surface) and sunning(conventional aging method) or nonsunning aging(cap covering) on water content, redness and spreadability, film forming yeast occurance and salinity of surface layer kochujang during 120 days aging were investigated. In the case of sunning aging, film forming yeast was not visually found on the surface. The surface layer kochujang was so low spreadability(zero) and very high salinity(18-30%) that could not eat. However, the aging method after PE-film covering on the kochujang surface, and then cap covering(nonsunning) was very effective in keeping of soundness of surface layer kochujang without film forming yeast growth on the surface kochujang, especially was greatly effective in keeping of redness, moderate moisture content and spreadability. The PE-film and cap covering aging were effective in prevention of water evaporation and $CO_2$ release, and in accumulation of ethanol and organic acids between the PE-film and surface layer of kochujang.

  • PDF

Study on Pharmaceutical Byproducts and Sludges for Practical Application as Raw materials of organic compost (제약업종 부산물 및 오니의 퇴비원료로 활용 가능성 연구)

  • Lim, Dong-Kyu;Lee, Sang-Beom;Nam, Jae-Jag;Na, Young-Eun;Kwon, Jang-Sik;Cho, Nam-Sung;Park, Myoung-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.86-96
    • /
    • 2003
  • This study was conducted to investigate use possibility of pharmaceutical byproducts(process sludge) and waste water sludges as raw materials of organic compost at Fertilizer Official Regulation of Fertilizer Management Law in 2002. All pharmaceutical byproducts were satisfied the standard levels of raw material regulated in organic compost, some waste water sludges were deficient in the level. The content of n-hexane extractable material(HEM) was in byproduct higher than in waste water sludge. This was presumed that the sludge with containing a lot of organic matter was high in HEM content. Of the whole microorganism flora, bacteria was mainly detected, and yeast and filamentous fungi took up less population which was fluctuated depending on the source of sludges. Most dominated bacteria were identified into Genus of Pseudomonas. Pseudomonas syringae and Rathayibacter bathayi was classified as plant pathogenic bacteria.

  • PDF

Soybean Whey Composition and Alcohol Fermentation by Using Saccharomyces Cerevisiae (두부폐액(廢液)의 조성(組成) 및 Saccharomyces Cerevisiae를 이용(利用)한 Alcohol 발효(醱酵))

  • Choi, Mi-Ae;Choi, Kyoung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.2
    • /
    • pp.31-35
    • /
    • 1982
  • Alcohol fermentation was carried out by using the yeast (S. cerevisiae) and soybean whey as the sole carbon source. The whey was gained form waste after manufacturing of soybean curd. The whey contained approximately one gram sugar per hundred mililter and the sugar was consisted of a 65 per cent of reducing sugar. However, it showed a low protein content of 43mg per the same volume. Ammonium sulfate showed the best effect on the generation of carbon dioxide among three kinds of tested nitrogen sourogen sources, potassium nitrate, urea and ammonium sulfate. Thus, fermentation was carried out with supplement of 2.0g ammonium sulfate to one liter of soybean whey. During fermentation continued for 48 hours, the maximum amount of ethanol 1.86g was produced from one liter of soybean whey. The ethanol fermentation utilized 81 and 94% of its initial sugar and protein contents, respectively.

  • PDF

High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor

  • Vu, Van Hanh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1603-1611
    • /
    • 2009
  • High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.

Studies on Constituents and Culture of the Higher Fungi of Korea (한국산(韓國産) 고등균류(高等菌類)의 성분(成分)및 배양(培養)에 관한 연구(硏究))

  • Shim, Mi-Ja
    • The Korean Journal of Mycology
    • /
    • v.9 no.2
    • /
    • pp.49-66
    • /
    • 1981
  • The objectives of this investigation were to produce artificially an antitumor constituent by submerged culture of the mycelium of Coriolus versicolor (Fr.) Quel., to characterize the influence of various modifications of the nutrient and culture conditions with respect to the pro­duction, to determine chemical composition of the antitumor constituent, and to examine effects of the constituent on the immune response of mice. Submerged agitation of the mycelium in flasks containing a nutrient solution showed its adequate growth. Especially the mycelial growth in the medium containing glucose and yeast extract was abundant. The addition of cotton seed flour or ginseng waste to the medium increased the yield of mycelial growth and the production of the antitumor constituent. The replacement of glucose with starch also yielded the adequate growth. The antitumor constituent extracted from the mycelium and isolated from the culture filtrate was a protein-bound polysaccharide. The analyses of this constituent by GLC and amino acid autoanalysis showed that it contained four monosaccharides and fifteen amino acids. The protein-free polysaccharide of the constituent was also found to exert greater antitumor activity against sarcoma-180 in mice than the entire constituent. The antitumor constituent was found to potentiate the immune response of mice against sheep red blood cell. The protein-bound polysaccharide exerted more favorable influence on the immunity than the protein-free moiety.

  • PDF

Microorganism lipid droplets and biofuel development

  • Liu, Yingmei;Zhang, Congyan;Shen, Xipeng;Zhang, Xuelin;Cichello, Simon;Guan, Hongbin;Liu, Pingsheng
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.575-581
    • /
    • 2013
  • Lipid droplet (LD) is a cellular organelle that stores neutral lipids as a source of energy and carbon. However, recent research has emerged that the organelle is involved in lipid synthesis, transportation, and metabolism, as well as mediating cellular protein storage and degradation. With the exception of multi-cellular organisms, some unicellular microorganisms have been observed to contain LDs. The organelle has been isolated and characterized from numerous organisms. Triacylglycerol (TAG) accumulation in LDs can be in excess of 50% of the dry weight in some microorganisms, and a maximum of 87% in some instances. These microorganisms include eukaryotes such as yeast and green algae as well as prokaryotes such as bacteria. Some organisms obtain carbon from $CO_2$ via photosynthesis, while the majority utilizes carbon from various types of biomass. Therefore, high TAG content generated by utilizing waste or cheap biomass, coupled with an efficient conversion rate, present these organisms as bio-tech 'factories' to produce biodiesel. This review summarizes LD research in these organisms and provides useful information for further LD biological research and microorganism biodiesel development.

Batch Decolorization of Reactive Dye Waste Water by a Newly Isolated Comamonas sp. AEBL-85. (반응성 염료폐수 처리를 위한 Comamonas sp. AEBL-85 분리 및 회분식 탈색)

  • 이은열
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.577-581
    • /
    • 2004
  • Comamonas sp. AEBL-85 was isolated from microbial granules in an activated sludge process of long-term operated for the treatment of reactive azo dye, and characterized its capability to decolorize Reactive Black 5. The effects of adding carbon source and nitrogen source on the extent of decol-orization were analyzed to develop an optimal medium. The optimum initial pH and temperature wire 6.0 and 35$^{\circ}C$, respectively. Reactive Black 5 of 50 mg/l was readily decolorized up to 95% within 40 hr by Comamonas sp. AEBL-85.