The Characteristic of Selective Attachment and Bioleaching for Pyrite Using Indigenous Acidophilic Bacteria at $42^{\circ}C$

$42^{\circ}C$에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성

  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University)
  • 박천영 (조선대학교 에너지자원공학과) ;
  • 김순오 (경상대학교 지구환경과학과) ;
  • 김봉주 (조선대학교 에너지자원공학과)
  • Received : 2010.02.01
  • Accepted : 2010.04.01
  • Published : 2010.04.28

Abstract

The bioleaching experiment under $42^{\circ}C$ was effectively carried out to leach the more valuable element ions from the pyrite in the Gangyang mine waste. Bacteria can survive at this temperature, as indigenous acidophilic bacteria were collected in the Hatchobaru acidic hot spring, in Japan. To enhance the bacterial activity, yeast extract was added to the pyrite-leaching medium. The indigenous acidophilic bacteria appeared to be rod-shaped in the growth-medium which contained elemental sulfur and yeast extract. The rod-shaped bacteria ($0.7\times2.6\;{\mu}m$, $0.6\times7\;{\mu}m$, $0.8\times5\;{\mu}m$ and $0.7\times8.4\;{\mu}m$) were attached to the pyrite surface. The colonies of the rod-shaped bacteria were selectively attached to the surroundings of a hexagonal cavity and the inner wall of the hexagonal cavity, which developed on a pyrite surface. Filament-shaped bacteria ranging from $4.92\;{\mu}m$ to $10.0\;{\mu}m$ in length were subsequently attached to the surrounding cracks and inner wall of the cracks on the pyrite surface. In the XRD analysis, the intensity of (111), (311), (222) and (320) plane on the bacteria pyrite sample relatively decreased in plane on the control pyrite sample, whereas the intensity of (200), (210) and (211) increased in these samples. The microbiological leaching content of Fe ions was found to be 3.4 times higher than that of the chemical leaching content. As for the Zn, microbiological leaching content, it was 2 times higher than the chemical leaching content. The results of XRD analysis for the bioleaching of pyrite indicated that the indigenous acidophilic bacteria are selectively attacked on the pyrite specific plane. It is expected that the more valuable element ions can be leached out from the mine waste, if the temperature is increased in future bioleaching experiments.

광양 광산 폐석더미에 많은 양으로 방치되어 있는 황철석으로부터 유용금속을 보다 효과적으로 용출시켜내기 위해서 $42^{\circ}C$에서 미생물 용출실험을 실시하였다. $42^{\circ}C$의 미생물 용출 실험에서 생존할 수 있는 토착 호산성박테리아를 일본 하쵸바루 산성 온천수에서 채취하였고, 박테리아의 용출능력을 향상시켜 주기 위하여 황철석-용출 배양액에 yeast extract를 첨가하였다. 원소황과 yeast extract가 포함된 성장-배양액에서 성장한 토착박테리아들은 막대 모양으로 나타났다. 크기가 약 $0.7\times2.6\;{\mu}m$, $0.6\times7\;{\mu}m$, $0.8\times5\;{\mu}m$$0.7\times8.4\;{\mu}m$인 박테리아들이 황철석 표면에 부착하였다. 막대 모양의 박테리아들은 황철석 표면에 발달한 육각형 공동 주변과 공동 안쪽 벽면에 집중적으로 군집을 형성하여 부착하였다. 길이가 약 $4.92\;{\mu}m$에서 약 $10.0\;{\mu}m$인 filament-shaped 박테리이들이 황철석 표면의 크랙 주변과 크랙 안쪽 벽변에 부착하였다. 황철석에 대한 XRD분석에서, 박테리아에 반응시킨 시료가 비교시료에 비하여 상대적으로 (111), (311), (222) 및 (320) 결정면들의 강도는 감소하였고, (200), (210) 및 (211)의 결정면들의 강도는 증가하였다. Fe 이온은 미생물학적 용출량이 화학적 용출량에 비하여 3.4배 이상 높게 용출되었고, Zn 이온은 화학적 용출량보다 미생물학적 용출량이 2배 이상 높게 용출되었다. 토착호산성박테리아가 황철석의 특정 표면을 선택적으로 공격히는 것을 SEM 및 XRD분석에서 확인하였다. 앞으로 보다 더 높은 온도로 미생물 용출실험을 실시한다면 보다 많은 유용금속이온이 용출될 것으로 기대된다.

Keywords

References

  1. Bennett, J.C. and Tributsch, H. (1978) Bacterial leaching patterns on pyrite crystal surfaces. Journal of Bacteriology. v.134, p.310-317.
  2. Berry, V.K. and Murr, L.E. (1978) Direct observations of bacteria and quantitative studies of their catalytic role in the leaching of low-grade, copper-bearing waste. In Murr, L.E. Torma, A.E. and Brierley, A.(ed.) Merallurgical applications of bacterial leaching and related microbiological phenomena. Academic Press, New York. p.103-136.
  3. Brierley, C.L. (1974) Molybdenite-leaching: use of a hightemperature microbe. Journal of the Less-Common Metals. v.36, p.237-247. https://doi.org/10.1016/0022-5088(74)90107-6
  4. Brierley, C.L. and Brierley, J.A. (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Canadian Journal of Microbiology. v.19, p.183-188. https://doi.org/10.1139/m73-028
  5. Brierley, C.L. and Brierley, J.A. (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Canadian Journal of Microbiology. v.19, p.183-188. https://doi.org/10.1139/m73-028
  6. Brierley, C.L., and Murr, L.E. (1973) Leaching: use of a thermophilic and chemoautotrophic microbe. Science. v.179, p.488-490. https://doi.org/10.1126/science.179.4072.488
  7. Brock, T.D., Brock, K.M., Belly, R.T. and Weiss, R.L. (1972) Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archives of Microbiology. v.84, p.54-68. https://doi.org/10.1007/BF00408082
  8. Das, A. and Mishra, A. K. (1996) Role of Thiobacillus ferrooxidans and sulfur(sulphide)-depenent ferric-ionreducing activity in the oxidation of sulphide minerals. Applied Microbiology and Biotechnology. v.45, p.377-382. https://doi.org/10.1007/s002530050699
  9. Dziurla, M.A., Achouak, W., Lam, B.T., Heulin, T. and Berthelin, J. (1998) Enzyme-linked immunofiltration assay to estimate attachment of thiobacilli to pyrite. Applied Environmental Microbiology. v.64, p.2937-2942.
  10. Edwards, K.J., Bond, P.L. and Banfield, J.F. (2000) Characteristics of attachment and growth of Thiobacillus caldus on sulfide minerals: A chemotactic response to sulfur minerals?. Environmental Microbiology. v.2, p.324-332. https://doi.org/10.1046/j.1462-2920.2000.00111.x
  11. Edwards, K.J., Hu, B., Hamers, R.J. and Banfield, J.F. (2001) A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiology Ecology. v.34, p.197-206. https://doi.org/10.1111/j.1574-6941.2001.tb00770.x
  12. Faure, G. (1991) Principles and application of inorganic geochemistry. Macmillan Publishing Company. 626p.
  13. Hendy, N.A. (1987) Isolation of thermophilic iron-oxidizing bacteria from sulfidic waste rock. Journal of Industrial Microbiology. v.1, p.389-392. https://doi.org/10.1007/BF01569337
  14. Langmuir, D. (1997) Aqueous environmental geochemistry, Prentice Hall, 600p.
  15. Lazaroff, N., Melanson, L., Lewis, E., Santoro, N. and Pueschel, C. (1985) Scanning electron microscopy and infrared spectroscopy of iron sediments formed by Thiobacillus ferrooxidans. Geomicrobiology Journal. v.4, p.231-268. https://doi.org/10.1080/01490458509385934
  16. Lazaroff, N., Sigal, W. and Wasserman, A. (1982) Iron oxidation and precipitation of ferric hydroxysulfates by resting Thiobacillus ferrooxidans cells. Applied and Environmental Microbiology. v.43, p.924-938.
  17. Leduc, L.G. and Ferroni, G.D. (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiology Reviews. v.14, p. 103-120. https://doi.org/10.1111/j.1574-6976.1994.tb00082.x
  18. Lottermoser, B. (2007) Mine wastes, Springer, 304p.
  19. Marsh, R.M. and Norris, P.R. (983) The isolation of some thermophilic, autotrophic iron-and sulfur-oxidising bacteria, FEMS Microbiology Letters. v.17, p.311-315. https://doi.org/10.1111/j.1574-6968.1983.tb00426.x
  20. Martello, D.V., Vecchio, K.S., Diehl, J.R., Graham, R.A., Tamilia, J.P. and Pollack, S.S. (1994) Do dislocations and stacking faults increase the oxidation rate of pyrites?. Geochim Cosmochim Acta. v.58, p.4657-4665. https://doi.org/10.1016/0016-7037(94)90198-8
  21. Mehta, A.P. and Murr, L.E. (1983) Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy. v.9, p.235-256. https://doi.org/10.1016/0304-386X(83)90025-7
  22. Mehta, A.P., and Murr, L.E. (1982) Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of Thiobacillus ferrooxidans($30^{\circ}C$) and a thermophilic microogram($55^{\circ}C$). Biotechnology and Bioengineering. v.24, p.919-940. https://doi.org/10.1002/bit.260240413
  23. Murr, L.E. and Berry, V.K. (1976) Direct observations of selective attachment of bacteria on low-grade sulfide ores and other mineral surfaces. Hydrometallurgy. v.2, p.11-24. https://doi.org/10.1016/0304-386X(76)90010-4
  24. Norris, P.R. and Barr, D.B. (1985) Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiology Letters. v.28, p.221-224. https://doi.org/10.1111/j.1574-6968.1985.tb00795.x
  25. Norris, P.R., Parrott, L.M., and Marsh, R.M. (1986) Moderately thermophilic mineral-oxidizing bacteria. In Ehrlich, H.L. and Holmes, D.S. (ed.) Biotechnology for the Mining, Metal-Refining, and Fossil Fuel Processing Industries, Biotechnology and Bioengineering Symp. No.16 Wiley, New York,
  26. Ohmura, N., Kitamura, K. and Saiki, H. (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Applied and Environmental Microbiology. v.59, p.4044-4050.
  27. Park, C.Y., Cheong, K.H., Kim, K.M., Hong, Y.U. and Cho, K.H. (2009) Bioleaching of pyrite from the abandoned Hwasun coal mine drainage using indigenous acidophilic bacteria. The Korean Society for Geosystem Engineering. v.46, p.521-535.
  28. Pogliani, C. and Donati, E. (2000) Immobilisation of Thiobacillus ferrooxidans; importance of jarosite precipitation. Process Biochemistry. v.35, p.997-1004. https://doi.org/10.1016/S0032-9592(00)00135-7
  29. Rohwerder, T. and Sand, W. (2007) Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. In Donati, E.R. and Sand, W. (ed.) Microbial processing of metal sulfides. Springer, p.35-58.
  30. Rohwerder, T., Gehrke, T., Kinzler, K. Sand, W. (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied and Microbiology Biotechnology. v.63, p.239-248. https://doi.org/10.1007/s00253-003-1448-7
  31. Rojas-Chapana, J.A. and Tributsch, H. (2004) Interfacial activity and leaching patterns of Lptospirillum ferrooxidans on pyrite. FEMS Microbiology Ecology. v.47, p.19-29. https://doi.org/10.1016/S0168-6496(03)00221-6
  32. Sand, W., Gehrke, T., Jozsa, P.G. and Schippers, A. (2001) (Bio)chemistry of bacterial leaching - direct vs indirect bioleaching. Hydrometallurgy. v.59, p.159-175. https://doi.org/10.1016/S0304-386X(00)00180-8
  33. Sanhueza, A., Ferrer, I. J., Vargas, T., Amils, R. and Sanchez, C. (1999) Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy. v.51, p.115-129. https://doi.org/10.1016/S0304-386X(98)00079-6
  34. Schippers, A. and Sand, W. (1999) Bacterial leaching of metal sulfides proceeds by two in direct mechanisms via thiosulfate of via polysulfides and sulfur. Applied and Environmental Microbiology. v.65, p.319-321.
  35. Shi, S-Y. and Fang, Z-H. (2004) Bioleaching of marmatite flotation concentrate by Acidothiobacillus ferrooxidans. Hydrometallurgy. v.75, p.1-10. https://doi.org/10.1016/j.hydromet.2004.05.008
  36. Shivvers, D.W. and Brock, T.D. (1973) Oxidation of elemental sulfur by Sulfolobus acidocaldarius. Journal of Bacteriology. v.114, p.706-710.
  37. Shrihari, S., Kumar,R., Ghandi, K.S. and Natarajan, K.A. (1991) Role of cell attachment in leaching of chalcopyrite mineral by Thiobacillus ferrooxidans. Applied and Microbiology Biotechnology. v.36, p.278-282. https://doi.org/10.1007/BF00164434
  38. Silverman, M. P. (1967) Mechanism of bacteria pyrite oxidation. Journal of Bacteriology. v. 94, p.1046-1051.
  39. Silverman, M.P. and Ehrlich, H.L. (1964) Microbial formation and degradation of minerals. Advan. Appl. Microbiol., v.6, p.153-206. https://doi.org/10.1016/S0065-2164(08)70626-9
  40. Weiss, R.L. (1973) Attachment of bacteria to sulphur in extreme environment. Journal General Microbiology. v.77, p. 501-507. https://doi.org/10.1099/00221287-77-2-501