• 제목/요약/키워드: Waste material

검색결과 1,706건 처리시간 0.032초

Oyster Shell waste is alternative sources for Calcium carbonate (CaCO3) instead of Natural limestone

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제27권1호
    • /
    • pp.59-64
    • /
    • 2018
  • In this paper, we investigated the alternative sources of limestone. Oyster shell waste originated from aquaculture that causes a major disposal landfill problem in coastal sectors in southeast Korea. Their inadequate disposal causes a significant environmental problems araised. Bio mineralization leads to the formation of oyster shells and consists $CaCO_3$ as a major phase with a small amount of organic matter. It is a good alternative material source instead of natural lime stone. The utilization of oyster shell waste for industrial applications instead of natural limestone is major advantage for conservation of natural limestone. The present work describes the limestone and oyster shells hydraulic activity and chemical composition and characteristics are most similar for utilization of oyster shell waste instead of natural limestone.

재활용을 위한 양돈폐수와 공정슬러지의 특성연구 (Study on Characteristics of Piggery Waste and Processing Sludge for Reuse)

  • 황인수;민경석
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.308-313
    • /
    • 2006
  • Charicteristics of piggery waste and treatment processing sludges for reuse were investigated. If it was thoroughly regulated in disinfectants, antibiotic substances and heavy metals, raw piggery waste can be gratified in criteria for fermentative compost (liquid) for flowers cultivation. Also, Because it is satisfied with various criteria of heavy metals and fertilizer contents for reuse except water content, primary pre-treatment sludge is very good material for composting. If provated goods on heavy metals are used in coagulation & dewatering process, coagulation & dewatering sludges are suitable for criteria of special waste regulation and by-product compost. This study proves that, if they are accomplished with suitable composting and mature process, piggery waste and processing sludges are free from microbiological problems as well as criteria of composting.

Performance studies on concrete with recycled coarse aggregates

  • Yaragal, Subhash C.;Teja, Dumpati C.;Shaffi, Mohammed
    • Advances in concrete construction
    • /
    • 제4권4호
    • /
    • pp.263-281
    • /
    • 2016
  • Concrete continues to be the most consumed construction material in the world, only next to water. Due to rapid increase in construction activities, Construction and Demolition (C&D) waste constitutes a major portion of total solid waste production in the world. It is important to assess the amount of C&D waste being generated and analyse the practices needed to handle this waste from the point of waste utilization, management and disposal addressing the sustainability aspects. The depleting natural resources in the current scenario warrants research to examine viable alternative means, modes and methods for sustainable construction. This study reports processing Recycled Coarse Aggregates (RCA) using a rod mill, for the first time. Parameters such as amount of C&D waste for processing, nature of charge and duration of processing time have been optimized for obtaining good quality RCA. Performance of RCA based concrete and performance enhancement techniques of 50% RCA based concrete are discussed in this paper.

A Brief Review on Limestone Sources and Oyster Waste Generation-Bantayan

  • Yu, Kwang Sun;Thriveni, Thenepalli;Jegal, Yujin;Whan, Ahn Ji
    • 에너지공학
    • /
    • 제26권1호
    • /
    • pp.62-67
    • /
    • 2017
  • Limestone is an important commodity in Philippines. Limestone has numerous uses that range from agricultural applications to building materials to medicines. Many limestone products require rock with specific physical and chemical characteristics. Most limestone is biochemical in origin meaning the calcium carbonate in the stone originated from shelled oceanic creatures. In this paper, we reported the natural sources of limestone, geological formation of limestone and the oyster shell waste in Cebu, Bantayan, Philippines were reported. Due to the mining or quarrying in Cebu, Bantayan, in a limestone area poses the threat of groundwater pollution (since limestone is a porous geologic formation with a high transmissivity). The other environmental issue is oyster shell waste. The oyster shell waste is the major source of limestone. We developed and applied appropriate technologies for the extraction of limestone from oyster shell waste and utilizes as high value added material.

화재에 의한 폐타이어 혼합 콘크리트강도 변화에 관한 실험적 연구 (A Strength Change of the Concrete Mixed with Waste Type due to Fire)

  • 손기상
    • 한국화재소방학회논문지
    • /
    • 제16권2호
    • /
    • pp.22-26
    • /
    • 2002
  • 산업체에서 들판에 버려지는 폐타이어 경제적으로 재활용하는 방법을 개발하는 것은 아주 중요한 일이다. 이것은 환경 친화적 정책과도 일관성을 갖는 것이다. 폐타이어 재료를 사용하는 강도에 초점을 맞춘 연구들이 많이 진행되었다. 이제, 정부의 지원하에 국내에서 여러 가지 상이한 입자크기의 폐타이어 재료들이 생산되고 있다. 본 연구는 폐타이어 혼합 콘크리트가 "화재시 온도에 따라" 얼마나 저항하는 지를 밝히는 것이다. 그리고 강도감소율이 얼마인지를 찾아내는 것이다. 이들 관련 결과는 이 분야에 대한 실무적 구조물 적용 방법을 구명하기 위하여 비교되고 있다. 배합비율은 경험과 시행착오 법을 사용하여 결과중에서 예상되는 확정적인 몇 가지들이 결론에 제시되어 있다. 600도 가열시의 폐타이어 배합 콘크리트는 섞지 않은 일반 콘크리트의 경우에 비해 강도 변화가 거의 없었다.화가 거의 없었다.

폐 LCD 패널유리를 이용한 제올라이트의 합성 (Synthesis of Zeolite from Waste LCD Panel Glass)

  • 이철태
    • 공업화학
    • /
    • 제28권5호
    • /
    • pp.521-528
    • /
    • 2017
  • 폐 LCD 패널유리의 재활용방안을 찾고자, 폐 LCD 패널유리를 원료로 사용하여 수열반응에 의해 이온교환성능을 갖는 제올라이트 합성공정을 조사하였다. 폐 LCD 패널유리는 이온교환성능을 갖는 제올라이트의 제조 원료로 사용될 수 있음을 보여주었다. 이온교환능력을 갖는 제올라이트의 제조를 위한 조건은 폐 LCD 패널유리의 Al성분에 대한 Si성분의 몰비 2.0~2.8, 수열반응온도 $100^{\circ}C$, 수열반응시간 12 h이다. 상기조건에서 Al성분에 대한 Si성분의 몰비(Si/Al mole ratio)를 2.0으로 하는 경우 A형 제올라이트가 합성되며, 몰비를 2.8의 조건으로 유지하는 경우 P형 제올라이트의 생성된다. 폐 LCD 패널유리를 이용하여 제조된 A형 제올라이트는 양호한 이온교환능력 및 중금속 흡착능력을 보여 주었으며, 결정상이 큐빅상으로 안정적으로 성장할수록 이온 교환능력은 우수하다.

폐자원을 활용한 내장용 인조석재의 물리적 특성 (Physical Properties of Artificial Interior stone Using Waste Resources)

  • 유용진;이상수;송하영
    • 한국건축시공학회지
    • /
    • 제14권3호
    • /
    • pp.237-243
    • /
    • 2014
  • 지구온난화 현상으로 인해 환경 문제가 심각하며, 또한, 시멘트의 원료인 석회석과 골재의 무분별한 채취로 인한 환경파괴와 자원고갈의 심각성이 강조되고 있는 상황에서 문제점을 줄이려는 노력이 지속되고 있는 실정이다. 따라서, 본 연구에서는 천연골재 대체재인 폐자기를 혼합하여 적용시켰다. 또한, 시멘트 대체재로써 마그네시아 인산염 복합체와 플라이애시를 혼입하여 그에 따른 인조석재의 특성을 알아보고자 한다. 실험결과, 폐유리 혼합비율 60% 및 폐자기 혼합비율 70%가 인조석재의 전반적인 실험에서 가장 우수한 것으로 판단되며, 인조석재의 기초적인 자료로 활용할 수 있을 것으로 기대된다.

분말 폐굴껍질을 이용한 정수슬러지의 탈수 개선방안 (The Study on the Dewaterability Improvement of Water Treatment Sludge Using Powdered Waste Oyster Shells)

  • 문종익;최성문;임영석;성낙창;김철;곽영규
    • 한국환경보건학회지
    • /
    • 제27권2호
    • /
    • pp.17-21
    • /
    • 2001
  • The object of this study is to find out the characteristics of waste oyster shells and determine the proper dosage of powdered waster oyster shells as the conditioning agent for water treatment sludge dewatering process. The large amount of waste oyster shells which discharges from the oyster farming, occurs serious environmental hazards. However, oysters shell contain large amount(about 38% by weight) of alkaline minerals, such as calcium and magnesium and so on, this natural material is thought to have the petential ability as a good conditioning agent. The results of this study are as follows. The optimum condition for improvement of the water treatment sludge dewaterability is when 6 g of waste oyster shell powder added to 200$m\ell$ of water treatment sludge. At optimum condition, the solid contents can reach to 31.78% and the specific resistance of conditioned sludge is 0.16$\times$10$^{8}$ sec$^2$/g. However, exceeding the of powdered waste oyster shell is needed to get the effective result. Consequently, the waste oyster shell can be a recyclable material to improve the dewaterability of water treatment sludges.

  • PDF

Effects of Animal Waste Addition on Food Waste Compost under Co-composting

  • Lee, Chang Hoon;Kim, Seok-Cheol;Park, Seong-Jin;Kim, Myeong-Sook;Oh, Taek-Keun
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.623-633
    • /
    • 2017
  • Food waste has been recognized as a organic sources for composting and many research was conducted to efficiently utilize or treat. This study was to evaluate a feasibility for producing food waste compost under co-composting with mixture of food and animal waste. The mixing ratio of food and animal waste was 35% as main material, which additionally mixed 30% of sawdust for co-composting. Total days of composting experiment were 84 days and each sub samples were collected at every 7 days from starting of composting. Results showed that inner temperature in composting was rapidly increased to $70{\pm}4^{\circ}C$ within 3~5 days depending on mixing animal waste of cattle, pig, and chicken base compared to sole food waste base. Expecially, the CN ratio in the mixture of food and pig water was the highest (16.2) among compost. After finishing composting experiment, maturity was evaluated with solvita and germination test. Maturity index (MI) of the mixture of food and animal waste was ranged between 6~7, but was 3 in sole food waste. Calculated germination index (GI) was at the range of about 100 irrespectively of mixing of food and animal waste. However, NaCl content and heavy metal as Cr, Cu, Ni, Pb, and Zn contents was increased in the mixture of food and animal waste. which was the highest in compost mixed the food and pig waste. Both MI and GI showed that manufactured fertilizer was suitable for fertilizer criteria while sole food waste was not adequate for composting due to composting periods. Overall, mixing the food and animal waste can be utilized for improving compost maturity, but more research should be conducted to make high quality of food waste compost with animal waste in agricultural fields.