• Title/Summary/Keyword: Waste lime sludge

Search Result 24, Processing Time 0.018 seconds

Studies on the Effects of Several Amendments on the Uptake of Cd, Cu and Zn by Rice Plant (수도(水稻)의 중금속(重金屬) 흡수(吸收) 경감(經感)에 대(對)한 몇가지 개량제(改良劑)의 효과(效果))

  • Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 1987
  • This study was conducted to find out the effect of several improvers such as triple super phosphate, slaked lime, wollastonite and gypsum for reducing Cd content in brown rice. Several improvers were applied to two different types of soils which are contaminated with copper-zinc mine wasted and sludge.(Soil I contained Cd : 7.88, Cu : 57.9, Zn : 175.0 ppm, Soil II contained Cd : 3.95, Cu : 30.2, Zn :124.0 ppm) In general, effects of improvers on reducing content of Cd, Cu and Zn in brown rice were greater in soil I than soil II. In soil I, the Cd content of brown rice was reduced to 0.4ppm below by application of triple superphosphate, fused phosphate, slaked lime and gypsum, 98, 225, 190 and 276Kg/10a, respectively. Triple superphosphate was more effective than fused phosphate in reducing uptake of Cd, Cu and Zn by applying them as an equal amount of phosphorous, also to equal alkalinity, slaked lime had the highest effect. Negatively linear effect was found between soil pH and Cd and Zn content in brown rice. As to above results, it was no doubt that triple superphosphate, fused phosphate and slaked lime would be applied to reduced heavy metals in brown rice. The slaked lime, triple super phosphate and fused phosphate were available to reduce uptake of Cd, Cu and Zn by rice plant grown in the soil contaminated with mine waste and sludge.

  • PDF

A Study on the Coagulation of Wastewater Containing Fine Silica Particles with the Waste Slurry from Soda Ash Manufacturing Industries (소오다회 제조 공장의 폐슬러리를 이용한 미세 실리카 함유 폐수의 응집에 관한 연구)

  • Jun, Se Jin;Yim, Sung Sam
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1073-1078
    • /
    • 1999
  • The objectives of this study are to examine the applicability of waste slurry from soda ash manufacturing industries as a coagulant for the treatment of wastewater containing fine silica particles, and to reduce the cost of wastewater treatment containing silica. Acceptable water quality can be obtained with a little dosing of waste slurry by gelation before the coagulation process so it could be concluded that the waste slurry from soda ash can be used as a coagulant. Based on the results of experiments, the optimum pH of gelation for silica in wastewater was around five and the treatment process with the gelation of silica could reduce the chemical dosage and waste sludge after coagulation. Dewatering and settling characteristics of the floc after coagulation with the waste slurry are better than those of the floc after coagulation with the lime milk only.

  • PDF

Determining Heavy Metal (loid) Stabilization Materials and Optimum Mixing Ratio: Aqueous Batch test

  • Oh, Seung Min;Oh, Se Jin;Kim, Sung Chul;Lee, Sang Hwan;Ok, Yong Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.540-546
    • /
    • 2014
  • Acid mine drainage sludge (AMDS) has been classified as mine waste and generally deposited in land. For this reason, studies have been conducted to examine the possibility of recycling AMDS as an amendment for heavy metal stabilization in soil. The main objective of this study was to evaluate heavy metal stabilization efficiency of AMDS comparing with the widely used lime stone. Also, optimum mixing ratio was evaluated for enhancing heavy metal stabilization. AMDS and limestone were mixed at the ratio of 0:100, 25:75, 50:50, 75:25, and 100:0 with five different heavy metal solutions ($100mg\;L^{-1}$ of $NaAsO_2$, $CdCl_2$, $CuCl_2$, $Pb(NO_3)_2$, and $ZnSO_4{\cdot}7H_2O$). The amendments were added at a rate of 3% (w/v). In order to determine the stabilization kinetics, samples were collected at different reaction time of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 minutes. The heavy metal stabilization by AMDS was faster and higher than those of limestone for all examined heavy metals. While limestone showed only 20% of arsenic (As) stabilization after 1,024 minutes, 96% of As was stabilized within 1 minute by AMDS. The highest effect on the stabilization of heavy metal (loid) was observed, when the two amendments were mixed at a ratio of 1:1. These results indicated that AMDS can be effectively used for heavy metal stabilization in soil, especially for As, and the optimum mixing ratio of AMDS and lime was 1:1 at a rate of 3% (w/v).

Soil Neutralizer Selection for Phytostabilzation Using Miscanthus sinensis Anderss. in Heavy Metal Contaminated Soil of Abandoned Metal Mine (폐금속광산 중금속오염토양에서 억새를 이용한 식물안정화공법을 위한 토양개량제 선정)

  • Jung, Mun Ho;Ji, Won Hyun;Lee, Jin Soo;Yang, In Jae
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.517-528
    • /
    • 2020
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Miscanthus sinensis Anderss. for phytostablization in heavy metal contaminated soil of abandoned metal mine. M. sinensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of M. sinensis showed that AMDS 20% was more effective than other amendments for phytostablization, and AMDS 10% showed second effectiveness. Waste lime+oyster, bottom ash and fly ash were also improved compared to control. Mobility of some heavy metal was increased by treatments. Therefore, it is necessary of preparatory investigation of soil condition to select soil amendment to apply on-site phytostablization.