• Title/Summary/Keyword: Waste iron oxide

Search Result 42, Processing Time 0.017 seconds

Relationship between Physicochemical Properties, Heavy Metal Contents and Magnetic Susceptibility of Soils (토양의 물리화학적 특성, 중금속 함량, 대자율 간의 상호관계 연구)

  • Chon, Chul-Min;Park, Jeong-Sik;Kim, Jae-Gon;Lee, Youn-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.281-295
    • /
    • 2010
  • This paper deals with magnetic susceptibility, mineralogy, soil properties (pH, EC, CEC, loss on ignition), iron and manganese oxides, the content and partitioning of heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn), and their mutual relationship in the soil samples of an unpolluted, abandoned mine area, and industrial complex area. The various minerals derived from weathered bedrock were identified by X-ray diffraction in the unpolluted soil samples, except for the magnetic minerals. XRD analysis also revealed the existence of hematite and magnetite related to mine tailings and waste rocks in the abandoned mine area samples. The industrial complex area samples had carbonate minerals, such as calcite and dolomite, that might be due to anthropogenic deposition. The sum of the reducible, oxidizable, and residual fractions was over 80% for the abandoned mine area samples and over 50% for the industrial complex area samples using the sequential extraction method. The industrial complex area samples had a relatively high carbonate fraction that was associated with carbonate minerals. The content of aqua regia-extractable Fe, Mn, As, and Zn had a high positive correlation with the content of the dithionite-citrate-bicarbonate (DCB)-extractable method related to Fe/Mn oxide phases. The 54% and 58% of aqua regia-extractable Fe and As content, respectively, acted together with the concentrations of the DCB-extractable phases. Magnetic susceptibility values of total samples ranged from 0.005 to $2.131{\times}10^{-6}m^3kg^{-1}$. The samples including iron oxide minerals, such as hematite and magnetite, had a high magnetic susceptibility. The magnetic susceptibility showed a significant correlation with the heavy metals, Cd (r=0.544, p<0.05), Cr (r=0.714, p<0.01), Ni (r=0.645, p<0.05), Pb (r=0.703, p<0.01), and Zn (r=0.496, p<0.01), as well as Fe (r=0.608, p<0.01) and Mn (r=0.615, p<0.01). The aqua regia-extractable Fe and Mn content had a significant positive correlation with Cd, Cr, Cu, Ni, and Zn. However, the DCB-extractable Fe and Mn content had a significant positive correlation with As and Ni, indicating that the heavy metals were associated with Fe and Mn oxide minerals.

An Experimental Study on Rapid Repairing Mortar for Road with Steel Slag (철강 슬래그를 사용한 도로용 긴급보수 모르타르에 관한 실험적 연구)

  • Jung, Ui-In;Kim, Bong-Joo;im, Jin-Man;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • The purpose of this study is to recycle steel slag generated from the iron producing process and to use steel slag as a construction material which is currently landfilled Steel slag is subjected to aging treatment due to the problem of expansion and collapse when it reacts with water. The Slag Atomizing Technology (SAT) method developed to solve these problems of expanding collapse of steel slag. In this study, experimental study on the emergency repair mortar using the reducing slag, electric arc furnace slag and silicon manganese slag manufactured by the SAT method is Reduced slag was shown an accelerated hydration when it was replaced with rapidly-setting cement, and the rate of substitution was equivalent to 15%. It is shown that the electric furnace oxide slag is equivalent to 100% of the natural aggregate, and it can be replaced by 15-30% when the silicon manganic slag is substituted for the electric furnace oxide slag. With the above formulation, it was possible to design the rapidly repair mortar for road use. These recycling slags can contribute on achieving sustainability of construction industry by reducing the use of cement and natural aggregates and by reducing the generation of carbon dioxide and recycling waste slag.