• Title/Summary/Keyword: Waste gas treatment

Search Result 241, Processing Time 0.024 seconds

Biofiltration of Air Streams Contaminated Hydrogen Sulfide : Performance Evaluation of Different Carriers

  • Jeong, Gwi-Taek;Lee, Gwang-Yeon;Lee, Kyoung-Min;Cha, Jin-Myoung;Joe, Yong-Il;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.456-462
    • /
    • 2005
  • The objective of this study was to develop a removal process by which $H_2S$ could be biologically removed from the odoriferous gases generated in the waste food recycling process. In order to develop this process we were first required to select a proper biofilter support protocol. When the selected biofilter equipment was then tested suing a synthetic odoriferous gas containing 600 ppm of $H_2S$, we noted a maximal removal rate of 658 $g-H_2S/m^3{\cdot}hr$, using polypropylene fibrils as supporting materials. Under identical experimental conditions, we obtained a value of 411.2 $g-H_2S/m^3{\cdot}hr$, using polyurethane as a support material. We also conducted a trial in which volcanic stone was utilized as a support material, and in this trial, we logged a maximal 105.1 $g-H_2S/m^3{\cdot}hr$ removal rate. As the result of our experiments, we concluded that polypropylene fibrils constituted the ideal material for the removal of $H_2S$ gas via biological treatment.

  • PDF

Bio-oil production using residual sewage sludge after lipid and carbohydrate extraction

  • Supaporn, Pansuwan;Ly, Hoang Vu;Kim, Seung-Soo;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.202-210
    • /
    • 2019
  • In order to maximize the utilization of sewage sludge, a waste from wastewater treatment facility, the residual sewage sludge generated after lipid and carbohydrate extraction for biodiesel and bioethanol production was used to produce bio-oil by pyrolysis. Thermogravimetric analysis showed that sludge pyrolysis mainly occurred between 200 and $550^{\circ}C$ (with peaks formed around 337.0 and $379.3^{\circ}C$) with the decomposition of the main components (carbohydrate, lipid, and protein). Bio-oil was produced using a micro-tubing reactor, and its yield (wt%, g-bio-oil/g-residual sewage sludge) increased with an increase in the reaction temperature and time. The maximum bio-oil yield of 33.3% was obtained after pyrolysis at $390^{\circ}C$ for 5 min, where the largest amount of energy was introduced into the reactor to break the bonds of organic compounds in the sludge. The main components of bio-oil were found to be trans-2-pentenoic acid and 2-methyl-2-pentenoic acid with the highest selectivity of 28.4% and 12.3%, respectively. The kinetic rate constants indicated that the predominant reaction pathway was sewage sludge to bio-oil ($0.1054min^{-1}$), and subsequently to gas ($0.0541min^{-1}$), rather than the direct conversion of sewage sludge to gas ($0.0318min^{-1}$).

Evaluation of decontamination factor of radioactive methyl iodide on activated carbons at high humid conditions

  • Choi, Byung-Seon;Kim, Seon-Byeong;Moon, Jeikwon;Seo, Bum-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1519-1523
    • /
    • 2021
  • Radioactive iodine (131I) released from nuclear power plants has been a critical environmental concern for workers. The effective trapping of radioactive iodine isotopes from the off-gas stream generated from nuclear facilities is an important issue in radioactive waste treatment systems evaluation. Numerous studies on retaining methyl iodide (CH3I131) by impregnated activated carbons under the high content of moisture have been extensively studied so far. But there have been no good results on how to remove methyl iodide at high humid conditions up to now. A new challenge is to introduce other promising impregnating chemical agents that are able to uptake enough radioactive methyl iodide under high humid conditions. In order to develop a good removal efficiency to control radioiodine gas generated from a high humid process, activated carbons (ACs) impregnated with triethylene diamine (TEDA) and qinuclidine (QUID) were prepared. In addition, the removal efficiencies of the activated carbons (ACs) under humid conditions up to 95% RH were evaluated by applying the standard method specified in ASTM-D3808. Quinuclidine impregnated activated carbon showed a much higher decontamination factor above 1,000, which is enough to meet the regulation index for the iodine filters in nuclear power plants (NPPs).

Development of a Bioscrubber for Treatment of VOC Emissions from Contaminated Soil with Hydrocarbons (유류오염토양으로부터 발생하는 VOC가스처리를 위한 바이오스크러버 개발)

  • 장윤영;황경엽;곽재호;최대기
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 1997
  • Aiming at the treatment of large volumes of gas with a low concentration of poorly water soluble VOC(Volatile Organic Compound), a new system is proposed: the combination absorption tower/bioreactor. In the scrubber part of the bioscrubbing system, the contaminating compounds are absorbed in a aqueous phase. The contaminated scrubbing liquid is transported to the bioreactor, where the compounds are biodegraded by aerobic microorganisms (mainly to carbon dioxide, water, and biomass). In this study, separation of a volatile organic compound(VOC) out of a waste gas stream has been carried out using a re-cyclable high boiling point extrant(HBE). The liquid stream containing a high boiling point entrant(HBE) scrubs the gas stream in a direct gas-liquid countercurrent contacting operation in a packed tower for the removal of said component from the gaseous stream. A packed-bed column using Pall Ring was set up in order to simulate practical conditions for the scrubbing tower. The liquid stream transported to the bioreactor is recovered and recycled to the scrubber. The model gas, which contained 400 mg/$\textrm{m}^3$ of toluene, at a rate of 100 L/min, flowed into the packed column where the scrubbing liquid trickled over the packing in countercurrent to the rising gas at 10~15L/min. The bioscrubber designed for large volume air streams containing VOCs showed removal efficiency up to 80% in an optimum operating conditions during the tests fer removing toluene from an air stream by scrubbing the air stream with HBE.

  • PDF

Use of By-product Hydrated Lime as Alkali Activator of Blast Furnace Slag Blended Cement (고로수쇄(高爐水碎)슬래그 혼합(混合)시멘트의 알칼리 자극제(刺戟劑)로 부산소석회(副産消石灰)의 활용(活用))

  • Cho, Jin-Sang;Yu, Young-Hwan;Choi, Moon-Kwan;Cho, Kye-Hong;Kim, Hwan;Yeon, Kyu-Seok
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.33-44
    • /
    • 2010
  • In this study, the possibility of utilizing carbide lime waste, obtained from the generation of acetylene process, as a alkali activator of blast furnace slag cement was investigated. The physical and chemical analysis of the carbide lime waste was studied and three types lime waste in order to investigate behaviour as alkali activator were used. Lime wastes were added 0, 10, 20 and 30 wt.% in blast furnace slag and blast furnace slag containing lime waste were added 0, 10, 30 and 50 wt.% in OPC. As a result of analysis of hydration properties, in the case of calcium hydroxide rehydrated after heat treatment at $800^{\circ}C$, it was higher hydration rate than other specimens. For the results of compressive strength test, when lime waste passed 325 mesh sieve and rehydrated calcium hydroxide were used, it was higher compressive strength than OPC from hydration 7days. At OPC50 wt.%-BFS45 wt.%-AA5 wt.% system using lime waste of 325 mesh under, the highest compressive strength appeared.

The Removal of NOx by Mediated Electrochemical Oxidation Using Ag(II) As a Mediator (Ag(II)를 매개체로 사용하는 전기화학적 매개산화에 의한 NOx 제거)

  • Lee, Min-Woo;Park, So-Jin;Lee, Kune-Woo;Choi, Wang-Kyu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • The effects of the applied current density, the $AgNO_3$ concentration, the scrubbing liquid flow rate and the NO-air mixed gas flow rate on the NO removal efficiency were investigated by using $Ag^{2+}$ mediated electrochemical oxidation (MEO). Results showed that the NO removal efficiency increased with increasing the applied current density. The effect of the $AgNO_3$ concentration on the NO removal efficiency was negligibly small in the concentration of $AgNO_3$ above 0.1 M. When the scrubbing liquid flow rate increased, the NO removal efficiency was gradually increased. On the other hands, the NO removal efficiency decreased with increasing the NO-air mixed gas flow rate. As a result of the treatment of NO-air mixed gas by using the MEO process with the optimum operating condition and the chemical absorption process using 3 M $HNO_3$ solution as a scrubbing liquid, the removal efficiency of NO and $NO_x$ was achieved as 95% and 63%, respectively.

Determination of Radiolysis Produce of DHOA by GC/MS (GC/MS를 이용한 DHOA의 방사선 분해생성물 분석)

  • Yang, Han-Beom;Lee, Eil-Hee;Lim, Jae-Kwan;Chung, Dong-Yong;Kim, Kwang-Wook;Kim, Jong-Seung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • Dihexyloctanamide(DHOA) was used as an extractant or phase modifier with the diamide extractants in a solvent extraction process for a radioactive liquid waste treatment. The degradation compounds of the DHOA extractant, irradiated with $^{60}Co$ gamma ray, were octanoic acid and dihexylamine which are identified by a Fourier transform infrared(FT-IR) and gas chromatograph/mass spectrometer(GC/MS) analysis, and determined by the GC/MS with selected ion monitoring(SIM) mode. Retention behavior of octanoic acid, tridecane (internal standard) and dihexylamine in total ion chromatogram (TIC) were 8.65 min., 9.79 min., and 10.27 min., respectively. With increasing the absorbed dose of the $\gamma$-ray irradiated DHOA, the concentration of octanoic acid was decreased and that of dihexylamine was increased.

  • PDF

Development of Trickling Bioreactor(TBR) for Trichloroethylene biodegradation by Pseudomonas cepacia G4

  • Lee, Eun-Yeol;Ye, Byeong-Dae;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.410-413
    • /
    • 2000
  • Lab-scale trickling bioreactor(TBR) containing the biofilm of Pseudomonas cepacia G4 was developed for the treatment of trichloroethylene(TCE) in a waste gas stream. The effect of phenol feeding on the efficiency of TCE biodegadation in TBR was investigated with the change of inlet phenol concentration from 0 to 4.71 ppm. When 0.94 ppm of phenol was supplied, the best performance of TBR was maintained with the TCE removal efficiency of 58.1%. These results showed that the appropriate supply of phenol could stimulate TCE removal efficiency in TBR.

  • PDF

A study on the Structure of Turbulent Diffusion Flame Behind the Hollowed Flame Holder (중앙분공형 보염기 후류에 안정된 난류확산화염의 구조에 관한 연구(I))

  • Kang, I.G.;Lee, W.S.;Kim, T.H.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 1998
  • The purpose of study is to investigate the flame stability and Structure of turbulent diffusion flame behind the hollowed flame holder, which is located on the waste gas coming out from the test furnace. Fluctuating temperature and ion current measurement and their statistical treatment were used for the purpose. Three types of flame were stabilized and each of which were changed by adequate equivalence ration. And we found that have no periodicity near reacting zone.

  • PDF

Characteristics of Electron Beam Extraction in Large Area Electron Beam Generator

  • Woo, Sung-Hun;Lee, Hong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.10-14
    • /
    • 2004
  • A large area electron beam generator has been developed for industrial applications, for example, waste water cleaning, flue gas treatment, and food pasteurization. The operational principle is based on the emission of secondary electrons from the cathode when ions in the plasma contact the cathode, which are accelerated toward the exit window by the gradient of the electric potential. Conventional electron beam generators require an electron beam scanning mechanism because a small area thermal electron emitter is used. The electron beam of the large area electron beam generator does not need to be scanned over target material because the beam area is considerable. We have fabricated a large area electron beam generator with peak energy of 200keV, and a beam diameter of 200mm. The electron beam current has been investigated as a function of accelerating voltage and distance from the extracting window while its radial distribution in front of the extracting window has been also measured.