Use of By-product Hydrated Lime as Alkali Activator of Blast Furnace Slag Blended Cement

고로수쇄(高爐水碎)슬래그 혼합(混合)시멘트의 알칼리 자극제(刺戟劑)로 부산소석회(副産消石灰)의 활용(活用)

  • Cho, Jin-Sang (Korea Institute of Limestone & Advanced Materials) ;
  • Yu, Young-Hwan (Korea Institute of Limestone & Advanced Materials) ;
  • Choi, Moon-Kwan (Korea Institute of Limestone & Advanced Materials) ;
  • Cho, Kye-Hong (Korea Institute of Limestone & Advanced Materials) ;
  • Kim, Hwan (Department of Materials Science and Engineering, Seoul National University) ;
  • Yeon, Kyu-Seok (Department of Regional Infrastructure Engineering, Kangwon National University)
  • 조진상 (한국석회석신소재연구소) ;
  • 유영환 (한국석회석신소재연구소) ;
  • 최문관 (한국석회석신소재연구소) ;
  • 조계홍 (한국석회석신소재연구소) ;
  • 김환 (서울대학교 재료공학부) ;
  • 연규석 (강원대학교 지역건설공학과)
  • Received : 2010.01.08
  • Accepted : 2010.06.09
  • Published : 2010.06.30

Abstract

In this study, the possibility of utilizing carbide lime waste, obtained from the generation of acetylene process, as a alkali activator of blast furnace slag cement was investigated. The physical and chemical analysis of the carbide lime waste was studied and three types lime waste in order to investigate behaviour as alkali activator were used. Lime wastes were added 0, 10, 20 and 30 wt.% in blast furnace slag and blast furnace slag containing lime waste were added 0, 10, 30 and 50 wt.% in OPC. As a result of analysis of hydration properties, in the case of calcium hydroxide rehydrated after heat treatment at $800^{\circ}C$, it was higher hydration rate than other specimens. For the results of compressive strength test, when lime waste passed 325 mesh sieve and rehydrated calcium hydroxide were used, it was higher compressive strength than OPC from hydration 7days. At OPC50 wt.%-BFS45 wt.%-AA5 wt.% system using lime waste of 325 mesh under, the highest compressive strength appeared.

본 연구에서는 아세틸렌가스 제조 공정에서 배출되어 나오는 부산소석회에 대한 고로수쇄슬래그의 알칼리 활성화제로서의 활용 가능성을 조사하고자 하였다. 부산소석회의 물리 화학적 분석을 실시하였으며, 알칼리 활성화제로서의 특성분석을 위하여 세 가지 형태로 부산소석회를 사용하였다. 부산소석회는 고로수쇄슬래그에 0, 10, 20, 30 wt.% 첨가하였으며, 소석회가 혼합된 고로수쇄슬래그를 보통포틀랜드시멘트에 0, 10, 30, 50 wt.%첨가하여 수화 및 물리적 특성을 조사하였다. 수화특성 분석결과 $800^{\circ}C$에서 열처리 후 재수화 시킨 소석회를 사용한 경우 다른 시료들 보다 높은 수화율을 보였다. 압축강도실험결과 325 mesh 이하크기의 부산소석회와 열처리 후 재수화시킨 소석회를 사용한 경우 수화 7일부터 OPC 보다 높은 강도 값을 나타내었으며, 325 mesh 이하크기 부산소석회를 활성화재로 사용한 OPC50 wt.%-BFS 45 wt.%-AA5 wt.%계에서 가장 높은 압축강도를 보였다.

Keywords

References

  1. F. A. Cardoso, H. C. Femandes, R. G Pileggi, M. A. Cincotto and V. M. John, 2009: Carbide lime and industrial hydrated lime characterization, Powder Technology, 195, pp. 143-149. https://doi.org/10.1016/j.powtec.2009.05.017
  2. P. Ramasamy, A. Periathamby, S. Ibbrahim, 2002: Carbide sludge management in acetylene plants by using vacuum filtration, Waste Mangag. Res. 20, pp. 536. https://doi.org/10.1177/0734242X0202000607
  3. M. J. Hologado, V. Rives, S. San Roman, 1992: Thermal decomposition of Ca(OH)2 fromacetylene manufacturirng: a route to supports for methane oxdative coupling catalysts, J. Mater. Sci. Lett. 11 (1992) 1708. https://doi.org/10.1007/BF00736217
  4. W. A. Al-khaja, I. M. Madany, M. H. Al-Dayed and A.A. Darwish. 1992: The mechanical and drying shrinkage properties of cement mortars containing carbide lime waste, Resour. Conserv. Recycl., 6(3), pp. 179-190. https://doi.org/10.1016/0921-3449(92)90029-2
  5. P. Krammart and S. Tangtermsirkul, 2004: Properties of cement made by partially replacing cement raw materials with municipnl solid waste ashes and calcium carbide waste, Construct. Bulid. Mater., 18, pp. 579-583. https://doi.org/10.1016/j.conbuildmat.2004.04.014
  6. W. A. Al-Khaja, M. H. Al-Sayed and I. M. Madany, 1993 : Effects of the incorporation of carbide iime waste on the properties of cement motars, concrete and asphaltic paving mixes, Advances in recovery and recycling: concepts and technology, pp.78-89, Hexagon.
  7. N. C. Consoli, P. D. M. Prietto, J. A. H. Carraro and K. S. Heineck, 2001 : Behavior of compacted soil-fly ash-carbide lime mixtures, Journal of geotechnical and geoenvironmental engineering, 127(9), pp, 774-782. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(774)
  8. H. Savastano Jr., P. G Warden and R. S. P. Coutts, 2001: Ground iron blast,furnace slag as a matrix for cellulose-cement materials, Cem. Concr. Compos., 23, pp. 389-397. https://doi.org/10.1016/S0958-9465(00)00083-4
  9. Richardson I. G Wiling C. R, Dickson M. J., 1989: The hydration of blast furnace slag cements, Adv. Cem. Res., 2(8), pp. 147-157. https://doi.org/10.1680/adcr.1989.2.8.147
  10. Douglas, E., Bilodeau, A., Malhotra, V. M., 1992: Properties and Durability o f Alkali-Activated Slag Concrete, ACI Materials Journal, 89(5), pp. 509-516.