• Title/Summary/Keyword: Waste gas treatment

Search Result 241, Processing Time 0.023 seconds

Species Alterations Caused by Nitrogen and Carbon Addition in Nutrient-deficient Municipal Waste Landfills

  • Kim, Kee-Dae
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • The ultimate target of restoring waste landfills is revegetation. The most effective method for increasing species richness and biomass in nutrient limited waste landfills is the use of fertilizers. The aim of the present study was to investigate the effects of nitrogen fertilizer, and the addition of carbon through sawdust, sucrose and litter, on vegetation dynamics at a representative municipal waste landfill in South Korea: Kyongseodong. A total of 288 permanent plots $(0.25m^2)$ were established and treated with nitrogen fertilizer (5, 10 and $20Ng/m^2$), sawdust $(289g/m^2)$ sucrose $(222g/m^2)$ and litter $(222g/m^2)$. The aboveground biomass was significantly enhanced by nitrogen fertilizer at 5 and $10Ng/m^2$, compared with the control plots. The total cover of all plant species increased significantly on plots treated with 5 and $20Ng/m^2$, as well as on those treated with sawdust and sucrose, compared with the control plots. The higher species richness after nitrogen fertilization of 10 to $20Ng/m^2$, and the sawdust and sucrose treatment demonstrated that this was an appropriate restoration option for nutrient deficient waste landfills. This study demonstrated positive nutrient impacts on plant biomass and species richness, despite the fact that municipal waste landfills are ecosystems that are highly disturbed by anthropogenic and internal factors (landfill gas and leachate). Adequate N and C combined treatments will accelerate species succession (higher species richness and perennial increase) for restoration of waste landfills.

The exfoliation of irradiated nuclear graphite by treatment with organic solvent: A proposal for its recycling

  • Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guarcini, Tiziana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1037-1040
    • /
    • 2019
  • For the past 50 years, graphite has been widely used as a moderator, reflector and fuel matrix in different kinds of gas-cooled reactors. Resulting in approximately 250,000 metric tons of irradiated graphite waste. One of the most significant long-lived radioisotope from graphite reactors is carbon-14 ($^{14}C$) with a half-life of 5730 years, this makes it a huge concern for deep geologic disposal of nuclear graphite (NG). Considering the lifecycle of NG a number of waste management options have been developed, mainly focused on the achievement the radiological requirements for disposal. The existing approaches for recycling depend on the cost to be economically viable. In this new study, an affordable process to remove $^{14}C$ has been proposed using samples taken from the Nuclear Power Plant in Latina (Italy) which have been used to investigate the capability of organic and inorganic solvents in removing $^{14}C$ from exfoliated nuclear graphite, with the aim to design a practicable approach to obtain graphite for recycling or/and safety disposed as L& LLW.

Economic Analysis for comparing LFG Utilization Alternatives (매립가스 활용대안 선정을 위한 경제성 분석)

  • 김동희;김은주;김봉선
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.201-211
    • /
    • 2001
  • The most general treatment method of municipal solid waste is a landfill. The LFG (landfill gas) migration is a serious problem in environmental aspect. The object of this study is to present the possibility of LFG utilization as a replacement or supplementary fuel for local energy -demand. We have developed the EXCEL program for the economic analysis.

  • PDF

Long Term Trend and Stability of Contaminant Sources of Finished Landfill (사용종료 매립장 오염원의 장기 변화 및 안정성)

  • 장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.12a
    • /
    • pp.1-40
    • /
    • 1996
  • In order to determine the proper treatment of the finished landfill, it is important to predict the trend and stability of the major sources of contaminant in the landfill. In this paper the fate of contaminant sources in the landfill is studied from various literatures by grouping the contaminants into waste, leachate, and landfill gas. One example site referred is Nanji landfill which is one of the representative finished landfills in our country and the trend of contaminant sources in this landfill at current stage is discussed.

  • PDF

Impulse Electromagnetic Radition for High Voltage Nanoseconds Pulse Generator (고전압 나노초 펄스 발생기를 이용한 전자기파 방사)

  • Kim, Young-Bae;Lee, Hong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.207-209
    • /
    • 2005
  • Ultra wide band electromagnetic energy can be transmitted to a far field by emitting the nanoseconds high voltage pulse electromagnetic energy via an antenna. This UWB EM energy is expected to be used in post-packing pasteurization of food, detection of buried objects or underground water veins and caves and the treatment of waste water or polluted gas. The nanoseconds pulse forming for UWB generation using high voltage blumlein line and an ultrafast switch is mentioned.

  • PDF

Preparation of Thin TiO$_2$ Photocatalytic Filter for Waste Gas Treatment (폐가스 처리를 위한 박막형 TiO$_2$ 광촉매 필터 제조)

  • 조영민;윤정호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.311-312
    • /
    • 2002
  • 환경분야에서 광촉매는 주로 오염물질의 광분해처리에 이용되고 있는데, 기존에 사용되고 있는 광분해 방법은 광촉매 미립자를 수용액에 슬러리 형태로 분산시키거나 fixed bed, fluidized bed에 부착시킨 형태의 반응기들이다. 실험적 수준의 연구로부터 얻어진 여러 연구 결과에 의하면 슬러리 형태의 반응기가 고정화 촉매 반응기보다 효율이 더 높은 것으로 보고되고 있다. 그러나 엔지니어링 관점에서 슬러리형 반응기는 촉매의 재활용과 정화 처리 후 촉매입자를 유체로부터 분리해야하는 결점이 있다. (중략)

  • PDF

High Voltage Nanoseconds Pulse Generation for 1GW UWB radiation (GW급 UWB용 고전압 나노초 펄스 발생)

  • Kim, Young-Bae;Lee, Hong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2123-2125
    • /
    • 2005
  • Ultra wide band electromagnetic energy can be transmitted to a far field by emitting the nanoseconds high voltage Pulse electromagnetic energy via an antenna. This UWB EM energy is expected to be used in post-packing pasteurization of food, detection of buried objects or underground water veins and caves and the treatment of waste water or polluted gas. The nanoseconds pulse forming for UWB generation using 500kV blumlein line and an ultrafast switch is mentioned.

  • PDF

Combustion Study of 1MWe Circulating Fluidized Boiler for RDF (1MWe급 순환유동층 열병합 보일러 운전연구)

  • Shun, Do-Won;Bae, Dal-Hea;Jo, Sung-Ho;Lee, Seung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.837-842
    • /
    • 2012
  • A pilot scale circulating fluidized boiler (CFB) for refuse derived fuel (RDF) is designed and constructed to demonstrate a performance of CFB technology for waste fuel utilization. The boiler has a design capacity of 6 MWth with $400^{\circ}C$ 38 ata steam generation performance. The maximum steam rate of the boiler was about 8 ton/h. The main component of the fuel was RDF (Refuse Derived Fuel) with high volatile contents and showed fast ignition and easy combustion. The pilot plant showed over 99.5% of combustion efficiency. Stable operation of RDF CFBC depended on the content of non combustion materials other than ash and fast removal of them. Emission level was under legal limit except that of HCl without external flue gas treatment facilities. Also about 60% of fuel chlorine was absorbed to fly ash particles. For HCl emission control flue gas treatment technology is required such as wet and dry scrubber in order to comply with Korean regulation.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Field Investigation (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(I): 도시가스 및 수송용 - 현장조사 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.

Evaluation of Decomposition Characteristics of Organochlorine Pesticides Using Thermal Method (열적방법을 활용한 유기염소계 폐농약의 분해 특성 평가)

  • Kwon, Eun-Hye;Yoon, Young-Sam;Bea, Ji-Su;Jeon, Tae-Wan;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.744-753
    • /
    • 2018
  • The Stockholm Convention, which was adopted in Sweden in 2001 to protect human health and the environment, includes regulations for Persistent Organic Pollutant Rotors such as toxic and bioaccumulatives. Currently, there are 28 types of materials. This prohibits and limits the production, use, and manufacture of products. Korea is a member of the Convention, and it is necessary to prepare management and treatment plans to address the POP trends. Thus, we experimentally investigate whether the environmentally stable incineration is achieved when the sample is thermally treated using the Lab-scale (1 kg/hr). The target samples is pesticides in liquid phase and solid phase. In this study, organic chlorinated pesticides and their thermal characteristics were analyzed. We calculated the theoretical air volume based on the element analysis results. Because the interior of the reactor is small, more than 10 times of the air ratio was injected. The retention time was set to at least 4 seconds using a margin. The incineration temperature was $850^{\circ}C$ and $1100^{\circ}C$. Thus, we experimentally investigated whether the environmentally stable incineration was achieved when the sample was thermally treated using the Lab-scale (1 kg/hr). We analyzed five types of exhaust gas; the 02 concentration was high, but the CO amount decreased. Complete combustion is difficult because of the small size of the furnace due to the nature of Lab-scale. The organic chlorine-containing pesticide had an average decomposition rate of 99.9935%. Considering the decomposition rates of organic chlorine-containing pesticide in this study, the incineration treatment at over 2 ton/hour, which is typical for a conventional incinerator, is possible. Considering the occurrence of dioxins and unintentional persistent organic pollutants, it can operate at more than $1,100^{\circ}C$.