• Title/Summary/Keyword: Waste form

Search Result 501, Processing Time 0.032 seconds

DEVELOPMENT OF PYROPROCESSING AND ITS FUTURE DIRECTION

  • Inoue, Tadashi;Koch, Lothar
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.183-190
    • /
    • 2008
  • Pyroprocessing is the optimal means of treating spent metal fuels from metal fast fuel reactors and is proposed as a potential option for GNEP in order to meet the requirements of the next generation fuel cycle. Currently, efforts for research and development are being made not only in the U.S., but also in Asian countries. Electrorefining, cathode processing by distillation, injection casting for fuel fabrication, and waste treatment must be verified by the use of genuine materials, and the engineering scale model of each device must be developed for commercial deployment. Pyroprocessing can be effectively extended to treat oxide fuels by applying an electrochemical reduction, for which various kinds of oxides are examined. A typical morphology change was observed following the electrochemical reduction, while the product composition was estimated through the process flow diagram. The products include much stronger radiation emitter than pure typical LWR Pu or weapon-grade Pu. Nevertheless, institutional measures are unavoidable to ensure proliferation-proof plant operations. The safeguard concept of a pyroprocessing plant was compared with that of a PUREX plant. The pyroprocessing is better adapted for a collocation system positioned with some reactors and a single processing facility rather than for a centralized reprocessing unit with a large scale throughput.

The Removal of Organics in an Oxidation Ditch (산화구에서의 유기물 처리에 관한 연구)

  • 김건흥
    • Water for future
    • /
    • v.13 no.3
    • /
    • pp.71-76
    • /
    • 1980
  • The oxidation ditch is an efficient, low cost form of treatment of domestic and many industrial waste. It has gained rapid acceptance because of its simplicity, low cost operation, ease of operation, simple mintenance and flexibiltiy. The objective of this investigation was to measure the removal of organics in an existing dithc that does not have return sludge and which is not preceded by primary sedimentation. To accomplish this objective, samples of the wastewater influent and effluent were collected from the wastewater treatment plant of Mansfield, Texas during practical training. These samples were collected over an extended period of time to obtain samples at various treatment temperatures. Two analytical tests, COD and suspended solids, were used to monitor the operation of the plant. The results show that high removal efficiencies were obtained at high temperatures, with the efficiency decreasing as the temperature decreased to approximatedly 16$^{\circ}C$, at which point the efficienty tmeperature relationship appeared to stabilize.

  • PDF

The Degrdation of Pigment-Producing Furfural in Aquatic Waste (환경오염 유해색소의 미생물학적 분해)

  • 하영칠;홍순우;한홍의
    • Korean Journal of Microbiology
    • /
    • v.21 no.4
    • /
    • pp.207-212
    • /
    • 1983
  • Isolated Gram-negative bacteria, being capable of degrading toxic, recalcitrant, and pigment-producing furfural, were tentatively identified as Pseudomonas testosteroni, Pseudomonas maltophilia, Klebsiella Pneumoniae, and Pseudomonas fluorescens. They exhibited synergistic effects between P. testosteroni and the others in the degradation of colourproducing furfural. Synergistic effects and possible sequence of its degradation were attempted by manometric technique. P. testosteroni could degrade furfural to decolourize it and produce ninhydrin-reaction postive substance (NPS) which could be utilized by P. maltophilia and K. pneumoniae and the latter two bacteria could ,degrade furfural to 2-furoic acid as an oxidized form. Finally 2-furoic acid was further oxidized by P. fluorescens. Once NPS and 2-furoic acid were produced, the degradation efficiency was enhanced by competing four bacteria against furfural and 2-furoic acid.

  • PDF

Overview and Future Concerns for Recycling Glass Wastes (폐(廢)스마트 유리제품(琉璃製品) 재활용(再活用) 현황(現況)과 기술(技術) 전망(展望))

  • Hong, Hyun Seon;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • Glass materials possess unique functional characteristics of ceramics different from those of metals, which has marked glass as one of the mainstay materials in the history of mankind. Nowadays, industrial sophistication necessitates comparable "smart" attributes of glass materials as a significantly advanced form of sophistication. Smart glasses are increasingly applied in many state-of-the-art digital appliances such as displays and semiconductors and waste is also expected to accumulate therefrom in the near future: More than 60,000 tons of smart glass wastes were reported as of 2012, for example. In the present paper, current status of domestic Korean smart glass industry and related recycling enterprise have been comprehensively investigated. Finally, Korean domestic smart glass recycling technology and its future prospect are also briefly presented.

Comparison of the Cylindrical Geometry and the Planar Geometry for the Near-Field Radionuclides Transport Model (방사성 폐기물 처분장내 충전물질에서의 핵종 이동 모델의 원주좌표계와 평면좌표계에서 결과 비교)

  • Kang, Chul-Hyung;Han, Kyong-Won;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 1991
  • Many of the analyses of the transient radionuclide migration are approximated by an one-dimensional geometry and/or planar geometry. To validate these approximations, one should prove that these are reasonable and proper approximations. In this paper, the approximation which was in the study of the transport through backfill into a fissure is tried to validate. In that analysis, a cylindrical geometry was approximated by a planar geometry. The numerical illustrations show that the planar approximation agrees very well with the result of the cylindrical geometry for a ratio of the backfill outer radius to the waste form radius closed to unity. Even for a larger ratio of the two radii, the numerical difference is relatively small. Also the planar approximation which was used in the analysis gives conservative estimates.

  • PDF

Development of Copper and Copper Oxide Removal Technology Using Supercritical CO2 and Hexane for Silicon Solar Cell Recycling (실리콘 태양전지 재자원화를 위한 초임계 CO2 및 헥산을 이용한 구리 및 산화구리 제거기술 개발)

  • Lee, Hyo Seok;Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Lifetime of Si photovoltaics modules are about 25 years and a large amount of waste modules are expected to be discharged in the near future. Therefore, the extraction and collection of valuable metals out of discharged Si modules will be one of the important technologies. In this study, we demonstrated that supercritical $CO_2$ extraction method can be effectively used to remove Cu, one of the abundant elements in the module, as well as its oxide form, $Cu_2O$. Especially, we proved that the addition of hexane as co-solvent is effective for the removal of both materials. The optimal ratio of $CO_2$ and hexane was 4:1 at a fixed temperature and pressure of $250^{\circ}C$ and 250 bar, respectively. In addition, it was proven that the removal of $Cu_2O$ was preceded via reduction of $Cu_2O$ to Cu.

A Study on the Thermal Insulation Performance of Vacuum Insulation Panel Using Dry Processing Glass Fiber Core (건식 유리섬유 심재를 사용한 진공단열재의 단열특성에 관한 연구)

  • Yoo, Chae-Jung;Kim, Min-Cheol;Go, Seong-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.121-128
    • /
    • 2019
  • There is a big move to build zero-energy buildings in the form of passive houses that reduce energy waste worldwide. Korea has set a goal of reducing its greenhouse gas emissions by 37% by 2030 through the activation of green buildings, such as strengthening the energy levels of new buildings and improving the energy efficiency of existing buildings. The use of insulation with high insulation performance is one of the key technologies to realize this, and vacuum insulation is the next generation insulation that blocks the energy flow of the building. In this study, we measured the bonding structure of dry and wet processing glass fiber core materials and compared the insulation performance of vacuum insulation panel. In addition, the insulation performance of vacuum insulation panel was measured according to the thickness of the laminated core. It can be confirmed that the lamination structure of the core and the lamination thickness are important factors for the heat insulating performance of the vacuum insulating panel.

Real-time identification of the separated lanthanides by ion-exchange chromatography for no-carrier-added Ho-166 production

  • Aran Kim;Kanghyuk Choi
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.69-77
    • /
    • 2021
  • No-carrier-added holmium-166 (n.c.a 166Ho) separation is performed based on the results of separation conditions using stable isotopes dysprosium (Dy) and holmium (Ho) to minimize radioactive waste from separation optimization procedures. Successful separation of two adjacent lanthanides was achieved by cation-exchange chromatography using a sulfonated resin in the H+ form (BP-800) and α-hydroxyisobutyric acid (α-HIBA) as eluent. For the identification process after separation of stable isotopes, the use of chromogenic reagents alternatively enables on-line detection because the lanthanides are hardly absorb light in the UV-vis region or exhibit radioactivity. Four different chromogenic reagents were pre-tested to evaluate suitable coloring reagents, of which 4-(2-Pyridylazo)resorcinol is the most recommendable considering the sensitivity and specificity for lanthanides. Lanthanide radioisotopes (RI) were monitored for separation with an RI detector using a lab-made separation LC system. Under the proper separation conditions, the n.c.a 166Ho was effectively obtained from a large amount of 100 mg dysprosium target within 2 hrs.

Gas ebullition associated with biological processes in radioactively contaminated reservoirs could lead to airborne radioactive contamination

  • E.A. Pryakhin;Yu.G. Mokrov;A.V. Trapeznikov;N.I. Atamanyuk;S.S. Andreyev;A.A. Peretykin;K. Yu. Mokrov;M.A. Semenov;A.V. Akleyev
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4204-4212
    • /
    • 2023
  • Background: Storage reservoirs of radioactive waste could be the source of atmospheric pollution due to the efflux of aqueous aerosol from their water areas. The main mechanism of formation of aqueous aerosols is the collapse of gas bubbles at the water surface. In this paper, we discuss the potential influence of biological factors on gas ebullition in the water areas of the radioactively contaminated industrial reservoirs R-9 (Lake Karachay) and R-4 (Metlinsky pond) of the Mayak PA. The emission of the released non-dissolved gases captured with gas traps in reservoir R-9 was (88-290) ml/m2 per day (2015) and in reservoir R-4 (270-460) ml/m2 per day (2016). The analysis of gas composition in reservoir R-4 (60% methane, 35% nitrogen, 2.4% oxygen, 1.5% carbon dioxide) confirms their biological origin. It is associated with the processes of organic matter destruction in bottom sediments. The major source of organic matter in bottom sediments is the dying phytoplankton developing in these reservoirs. Conclusion: The obtained results form the basis to set a task to quantify the relationship between the phytoplankton development, gases ebullition and radioactive atmosphere contamination.

Development of Form to Improve the Productivity of PC Structure Connections -Focused on Apartment Buildings- (PC구조 접합부공사의 생산성 향상을 위한 거푸집 개발 -공동주택을 중심으로-)

  • Kim, Seon-Hyung;Lee, Won-Suk;Kim, Sun-Kuk;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.11-20
    • /
    • 2010
  • With the amendment to the Building Act in November of 2005 that offered incentives in terms of floor area ratio and number of stories to apartment buildings adopting the Rahmen structure to facilitate remodeling, the construction industry is paying more attention to PC structures. As connections between PC columns and beams require complex design, it is very difficult to install and remove forms. Since forms made of plywood for such connections are fabricated and installed on site, a significant amount of labor is required, and constructability is low. Furthermore, after concrete casting, the forms are removed in a state in which they cannot be recycled, which leads to a significant amount of construction waste. For this reason, a solution to address such issues needs to be studied. However, many researchers have focused only on the structural performance of PC structures in Korea and elsewhere, ignoring the need for research on the forms used in building PC structure connections. Therefore, this research aims to develop a form that can improve the productivity of PC structure connection construction, and compare it with conventional forms to highlight its contribution to gains in productivity and economic viability.