• Title/Summary/Keyword: Waste form

Search Result 490, Processing Time 0.027 seconds

AMBIDEBTER Nuclear Complex - A Credible Option for Future Nuclear Energy Applications (AMBIDEXTER 원자력 복합체 - 신뢰성 있는 미래 원자력에너지 이용 방안)

  • 오세기;정근모
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.235-242
    • /
    • 1998
  • Aiming at one of decisive alternatives for long term aspect of nuclear power concerns, an integral and closed nuclear system, AMBIDEXTER (Advanced Molten-salt Break-even Inherently-safe Dual-mission Experimental and TEst Reactor) concept is under development. The AMBIDEXTER complex essentially comprises two mutually independent loops of the radiation/material transport and the heat/energy conversion, centered at the integrated reactor assembly, which enables one to utilize maximum benefits of nuclear energy under minimum risks of nuclear radiation. And it provides precious radioisotopes and radiation sources from its waste stream. Also the reactor operates at very low level of fission products inventory throughout its lifetime. The nuclear and thermalhydraulic characteristics of the molten TH/$^{233}$ U fuel salt extend the capability of the self-sustaining AMBIDEXTER fuel cycle to enhance resource security and safeguard transparency. The reactor system is consisted of a single component module of the core, heat exchangers and recirculation pumps with neither pipe connections nor active valves in between, which will significantly improve inherent features of nuclear safety. States of the core technologies associated with designing and developing the AMBIDEXTER concept are mostly available in commercialized form and thus demonstration of integral aspects of the concept should be the prime area in future R&D programs.

  • PDF

A brief review on Oyster shells origin and sedimentary evolution for the formation of limestone

  • Ramakrishna, Chilakala;Thriveni, Thenepalli;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.48-56
    • /
    • 2018
  • The shell waste biomineralization process has known a tremendous metamorphosis and also the nanostructure with the identification of matrix proteins in oyster shells. However, proteins are represented in minor shell components and they are the major macromolecules that control biocrystal synthesis. Aragonite and calcite were derived from molluscan shells and evaluated the source of carbonate minerals and it helps for the formation of limestone. The oyster shell wastes are large and massive. The paleoecological study of oyster beds has discovered a near-shore and thin Upper Rudeis formation with storm influence during the accumulation of oysters with highly altered by disarticulation, bioerosion, and encrustation. It is possible even in the Paleozoic mollusks provided sufficient carbonate entirely to the source of microcrystalline of limestone. The present review is to discuss paleoecologically a number of oyster shell beds accumulated and sediment to form the different types of limestone during the Middle Miocene time.

Soybean Whey Composition and Alcohol Fermentation by Using Saccharomyces Cerevisiae (두부폐액(廢液)의 조성(組成) 및 Saccharomyces Cerevisiae를 이용(利用)한 Alcohol 발효(醱酵))

  • Choi, Mi-Ae;Choi, Kyoung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.2
    • /
    • pp.31-35
    • /
    • 1982
  • Alcohol fermentation was carried out by using the yeast (S. cerevisiae) and soybean whey as the sole carbon source. The whey was gained form waste after manufacturing of soybean curd. The whey contained approximately one gram sugar per hundred mililter and the sugar was consisted of a 65 per cent of reducing sugar. However, it showed a low protein content of 43mg per the same volume. Ammonium sulfate showed the best effect on the generation of carbon dioxide among three kinds of tested nitrogen sourogen sources, potassium nitrate, urea and ammonium sulfate. Thus, fermentation was carried out with supplement of 2.0g ammonium sulfate to one liter of soybean whey. During fermentation continued for 48 hours, the maximum amount of ethanol 1.86g was produced from one liter of soybean whey. The ethanol fermentation utilized 81 and 94% of its initial sugar and protein contents, respectively.

  • PDF

Study on the clinical application of the remedy of the synchronus combination of cupping boil and moxibustion (BUDDEUMI) (부항과 쑥뜸의 겸용치료기(부뜸이)의 임상 활용 방안에 대한 기초 연구)

  • Kim, Gyeong Cheol;Lee, Jeong Won;Kim, Yi Soon;Ryang, Han Cho
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.18 no.2
    • /
    • pp.111-120
    • /
    • 2014
  • Objectives In order to extend the bounds of korean medical instruments, we studied on the clinical application of BUDDEUM (the remedy of the synchronus combination of cupping boil and moxibustion) by the industry-academic cooperation. Methods The korean clinic, enterprise and university participated in jointly an educational-industrial complex. We studied on the clinical application of BUDDEUMI according to the structural character, functional efficiency and clinical case. And therefore we confirmed clinically the application of BUDDEUMI. Results The results was as follows. 1. The effects of BUDDEUMI are observed on the detoxification of blood waste material, & the form and appearance of effete matter are various. 2. The BUDDEUMI massage treatment operated in the abdominal and the back in order to recover energy and increase immunity. 3. The heating treatment by BUDDEUMI operated in sickly region, in order to pour into heat of moxibustion. Conclusion According to the results, by the set up the exclusive therapy room and the arrange of the exclusive human agency of BUDDEUMI, the newly and various therapies of korean medicine are possible to develop.

CONTAMINANT LEACHABILITY FROM UTILIZED WASTES IN GEOSYSTEMS

  • Inyang Hilary I.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.5-21
    • /
    • 2005
  • Urbanization rates of population range from about 1% in the developed countries to about 4% in developing countries. For a global population that may reach 10 billion within the next 40 years, pressure has arisen for an increase in the large-scale use of wastes and byproducts in construction. Ironically, most of the wastes that need to be recycled are generated in large cities where the need for constructed facilities to serve large population is high. Waste and recycled materials (WRM) that are used in construction are required to satisfy material strength, durability and contaminant teachability requirements. These materials exhibit a wide variety of characteristics owing to the diversity of industrial processes through which they are produced. Several laboratory-based investigations have been conducted to assess the pollution potential and load bearing capacity of materials such as petroleum-contaminated soils, coal combustion ash, flue-gas desulphurization gypsum and foundry sand. For full-scale systems, although environmental pollution potential and structural integrity of constructed facilities that incorporate WRM are interrelated, comprehensive schemes have not been developed for integrated assessment of the relevant field-scale performance factors. In this presentation, a framework for such an assessment is proposed and presented in the form of a flowchart. The proposed scheme enables economic, environmental, worker safety and engineering factors to be addressed in a number of sequential steps. Quantitative methods and test protocols that have been developed can be incorporated into the proposed scheme for assessing the feasibility of using WRM as partial or full substitutes for earthen highway materials in the field.

  • PDF

Characterization of degradation of fish wastes using mixed microorganisms (복합미생물을 이용한 수산폐기물의 분해특성)

  • 정해윤;정해윤;김중균
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.76-82
    • /
    • 2001
  • Fifteen species of microorganisms were isolate form the intestines of fishes, fish feed, and ferment. Eleven microorganisms except HY4, HY8, HY12, and HY13 were Gram-positive, and HY1, HY2, HY3, HY5, HY6, and HY7 produced lactic acid. The species of HY1, HY2, HY3, HY4, HY5, HY6, HY13, and HY14 showed some growth in the medium containing 1% of NaCl. Except HY6, HY7, HY8, HY12 and HY5, 10 isolates had proteolytic activity, whereas only HY13 and HY14 had lipase activity. From all the results four isolates (HY3, HY4, HY13 and HY14) were chosen for the degradation of fish wastes. There was no mutual inhibition among the microorganisms, and the optimum temperature and pH for the growth of the mixed culture were found to be 3 2$\^{C}$ and 7, respectively. Under the optimum growth conditions the maximum optical density and the maximum specific growth rate were estimated to be 2.35 and {TEX}$0.46h^{-1}${/TEX}, respectively. Major microorganisms in the mixed culture at the log-phase were HY3 and HY4, which occupied 70%. The degrading efficiency of fish waste by the mixed microorganisms was 2.3 times higher, compared to control. The total amount of free amino acids in the degraded products from fish wastes was 39g/100g protein and little odor was produced by the mixed microorganisms after 48 hours.

  • PDF

Chemical forms of Heavy Metal Elements in Mine Wastes, Stream Sediments and Surrounding Soils from the Gubong Mine, Korea (구봉광산 일대 광미, 하상퇴적물 및 주변 토양에서의 중금속 원소의 존재 형태)

  • 김종옥
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.261-271
    • /
    • 1999
  • Mining activity in the Gubong gold mine started in 1908 and lasted up to recent days. Heavy metals derived from the activity may be porentially toxic to human life and envirinment of this area. Because metal toxicity depends on chemical associations into five operationally defined groups: exchangeable, carbonate, reducible, oxidizable, and residual fractions, and the Most of heavy metals have significant little significance (alomost<1%). And Cu is mainly associated with the oxidizable from. Total concentration of heavy metals, pH, and mineralogy affect the chemical forms of the metals. Heavy metal concentrations. Significant amounts of metal elements (5∼65.1% in Pb, 6.2∼39.7% in Zn, 8.7∼54.7% in Cd, and 3.6∼24.7% in Cu) were present in carbonate form from mine wastes, contaminated soils and sediments. High pH value and cerussite (Pb bearing carbonate mineral) in mine wastes, contaminated soils and sediments. High pH value and cerussite (Pb beraring varbonate mineral) in mine waste support this result. Areas with high corbonate bound from would have higher potentoal conamination, however, because elements of carbonate bound forms are easily mobilized under lower pH conditions in the surface envionments due to acid to rain soil acidification.

  • PDF

Nomadism in Yeohlee Teng's Works (욜리 텡(Yeohlee Teng) 디자인에 표현된 노마디즘)

  • Yim, Eunhyuk
    • Journal of Fashion Business
    • /
    • v.20 no.1
    • /
    • pp.35-52
    • /
    • 2016
  • Yeohlee Teng's 'Urban Nomad' concept stresses high mobility and flexibility in 'Clothing-as-shelter' in order to satisfy the needs of urban dwellers. Yeohlee interprets clothing as a portable environment that protects and shelters urban nomads as well as creates space of clothing as intimate architecture. This study examines Nomadism in Yeohlee's designs since 1981 when she received the attention from the fashion critics, by conducting literary survey as well as case analysis. Nomadism in Yeohlee's work showed the following characterizes. First, 'modular system' deals with the organized dressing system that enables interchanging and layering of separates that function in the fifth season; second, 'organic geometry' describes the architectonic approach to clothing as wearable structure that transforms two dimensional geometry into three dimensional form; third, 'functionalism' refers to the use of technological novel materials, ergonomic clothing construction, and the strategy of using structure as decoration; and fourth, 'reductionism' is the economical approach for realizing Nomadism, which is composed of one-size-fits-all as well as unisex size system and 'zero waste' strategy to maximize use of a piece of cloth.

Graphite Furnace Atomic Absorption Spectrophotometric Determination of Trace Horseradish Peroxidase Using Nanosilver

  • Jiang, Zhi-Liang;Tang, Ya-Fang;Wei, Lin;Liang, Ai-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2732-2736
    • /
    • 2011
  • In pH 4.2 HAc-NaAc buffer solution, horseradish peroxidase (HRP) catalyzed $H_2O_2$ oxidation of nanosilver to form $Ag^+$. After centrifugation, $Ag^+$ in the supernatant can be measured by graphite furnace atomic absorption spectrophotometry (GFAAS) at the silver absorption wavelength of 328.1 nm. When HRP concentration increased, the $Ag^+$ concentration in the supernatant increased, and the absorption value enhanced. The HRP concentration in the range of 0.84-50 $ng{\cdot}mL^{-1}$ was linear to the enhanced absorption value (${\Delta}A$), with a regression equation of ${\Delta}A$=0.012C+0.11, correlation coefficient of 0.9988, and detection limit of 0.41 $ng{\cdot}mL^{-1}$ HRP. The proposed GFAAS method was used to detect HRP in waste water samples, with satisfactory results.

A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air (건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구)

  • 강재훈;송준엽;박종권;노승국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF