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Abstract

The shell waste biomineralization process has known a tremendous metamorphosis and also the 
nanostructure with the identification of matrix proteins in oyster shells. However, proteins are represented 
in minor shell components and they are the major macromolecules that control biocrystal synthesis. 
Aragonite and calcite were derived from molluscan shells and evaluated the source of carbonate minerals 
and it helps for the formation of limestone. The oyster shell wastes are large and massive. The 
paleoecological study of oyster beds has discovered a near-shore and thin Upper Rudeis formation with 
storm influence during the accumulation of oysters with highly altered by disarticulation, bioerosion, and 
encrustation. It is possible even in the Paleozoic mollusks provided sufficient carbonate entirely to the 
source of microcrystalline of limestone. The present review is to discuss paleoecologically a number 
of oyster shell beds accumulated and sediment to form the different types of limestone during the 
Middle Miocene time.
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1. Introduction:

Late & Middle Jurassic climates occurred water 
source is very low and allowed to develop the car-
bonate rocks throughout the world [1-6]. However, 
these evolution periods are the most important for 
the development of carbonate rocks throughout the 
world [7-11]. In the period of the "Callovian inter-
val," the production of carbonate occurred and it 
was recorded by stratigraphic gaps and the silici-
clastic depositions are mainly carbonates [12-16]. 
Consequently, the reef was developed in the period 
of Middle Oxfordian along with the Tethys margins 

[17-19].
1.1. Paleoecological and Taphonomic sugges-

tions.
In the oyster's lifecycle, biological factors and en-

vironmental factors are an influence upon the shell 
growth and its morphology [20]. Oyster shell waste 
sedimentation and fossil formation will occur after 
their taphonomic modifications. In the Middle 
Miocene period, the taphonomic processes occurred 
for the sedimentation of oyster shell waste. 

Paleoecological studies
The oysters are lived near shore in the Miocene 

period, and most of the sedimented shell are found 
less than 35 m depth in low-level water-containing 
environments [21]. Oysters are naturally found in ti-
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Fig. 1. Physiology of the shell calcification of the shells [40].

dal creeks, estuaries, bays and brackish water to nor-
mal marine water [22]. Oyster occurs mainly in sub-
tidal and intertidal areas and it has irregular shapes 
[23].

Ecological factors such as water turbulence, the 
nature of the substrate and crowding are strongly in-
fluenced by the oyster shells morphology [24]. The 
living oyster shell growth is high in warm condition 
with high energy environment than cold with lower 
energy environment [25]. But, oysters shell faster 
growth in variable salinity conditions than constant 
environment [26]. Alternatively, the growth of oyster 
shells with high thickness may occur in higher sal-
inity with bioerosion.

Taphonomical studies
Some studies indicate oyster shell wastes are stron-

gly deposited and densely packed in the Miocene 
period, and its occurrence to generated waves [27-33]. 
In the taphonomical process, the oysters after death 
shell waste were generated and sedimented finally 
preservation of these shells to fossil formation [34]. 
The taphonomic process explained the shell decom-
position and dissolution process after that abrasion, 
bioerosion, and fragmentation was occurred [35,36]. 
In the Middle Miocene period the oyster shell waste 
displacement process bioerosion process and encrus-
tation, are the major taphonomic characteristics.

2. Origin of Oyster shells:

The oyster shell originated from an ectodermic 
layer of the early stage developing animals, and it 
depends on the postembryonic developmental pro-
cesses. In the shell formation process, the amor-
phous calcium carbonate was produced in the proto-
conch stage of oysters. Weiss et al, [37] and Auzoux-
Bordenave et al. [38] suggested that different micro-
structural changes were occurred at growth stages of 
larval stage as well as in adult shells (e.g. Oyster, 
Manila clam and Abalone etc.), and the early miner-
alized layer probably amorphous calcium carbonate 
was showed below the periostracum layer. 

2.1. Oyster shell calcification process:
Oyster shell formation process typically enters the 

biomineralization of the epithelium layer [39]. The 
animal organ secretes a layer is known as the man-
tle and the shell inner surface coated with the cili-
ated tegument. The Fig. 6, redrawn by Waller [40], 
describes the calcification of oyster shell at the tis-
sue level. In these figure shows the shell growing 
border with bi-layers, thick internal and outer 
crossed-lamellar layers, these layers are formed with 
aragonite [41]. In the shell growing process involved 
the mantle layer, periostracum, an interface between 
the outer epithelium layer.
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location with reference
CaCO3 synthesis

(g CaCO3 m-2 a-1)

Wadden Sea - German (Mytilus edulis) [50] 2000-6500

Oyster reef (Crassostrea virginica) [51] 23400

Cretaceous period -Oyster shell layers [49] 4000-28500

Bay of Florida - USA [52] 7-64

Bay of Biscayne - USA. [53]. Subtidal 
Intertidal

3.74-18.17
309

Bay of Kailua - Hawaii (Molluscan ‘sediment production) [54] 0-120

French Polynesia lagoons (Cardium fragum) [55] 200

Molluscs-aragonitic shells (bivalves, gastropods, chitons) [56] 20-24

Dutch Wadden Sea -bivalves (Macoma balthica) [57] 9-13

Table 1. The calcium carbonate production from different mollusks.

2.2. The formation of oyster shell:
In the shell formation process, calcium ions are 

the main source for the shell formation. The calcium 
ions are uptake from food and diffusion throughout 
the body, and it transporting with hemolymph and 
stored in the mantle layer, and it will help for the 
calcifying the epithelium layer for the formation of 
the shell. Simultaneously, bicarbonate ions are avail-
able from the hydrated CO2 ions present into the 
site of the mantle epithelium layer. The calcium and 
bicarbonate ions are reacted for the formation of cal-
cium carbonate in the extrapallial space of the epi-
thelium layer, and the process self-assemble con-
trolled manner for the production of the CaCO3, and 
it was suggested by this equation. This process de-
scribes the shell calcification at the cellular level 
[42] 

Ca2+ + HCO3
- → CaCO3 + H+

2.3. Overview of Oyster Shell with chemical 
composition.

Oyster shells are composed predominantly of low-
magnesium calcite, and the bulk of modern Crasso-
strea and Ostrea shells are composed of stacked lay-
ers of foliated calcite locally interrupted by layers or 
lenses of chalky calcite [43-45]. The chalky calcite 
can be porous or denser and with pronounced lami-
nation, but the significance of the amount and struc-
ture of chalky calcite in oyster shells is not clear; it 
has been variously suggested as (a) the most efficient 
way to adjust the shell outline during growth [46], 

(b) an adaptation to living in soupy sediment [43], 
although porous chalky calcite is also found in oys-
ters [45], or (c) adaptation to less optimal environ-
mental conditions. MacDonald [45] noted that the 
volume of chalky calcite was larger in estuarine than 
in marine oyster shells. It has been suggested that 
the more dense and laminated prismatic structure of 
the chalky calcite in many fossil specimens is 
caused by cement that precipitated in the pores of 
the originally porous honeycomb structure [43]. The 
schematic diagram of oyster shell inner surface and 
vertical section of the shell as referred by Chinzei 
[43]. The scheme of oyster shell with the extension 
of myostracum and it contains 5∼35μm thickness, 
the major component of this myostracum is aragonite. 
The myostracum surrounded by the layer is called 
folia, it has 100∼200μm thickness was present 
and the major composition of folia is calcite. In be-
tween the myostracum and folia organic matrix are 
present.

2.4. Sedimentation of oyster waste shells for 

the formation of limestone:
In the Phanerozoic period, many mollusks shells, 

are generated with the major composition of aragon-
ite and some of the calcite. The less amount approx-
imately 10% of molluscan shells are composed with 
calcite, including with low level of Mg-calcite [48]. 
The different mollusks shells produce calcium carbo-
nate molecules as shown in Table 1, the calcium 
carbonate synthesis from different mollusks [49].
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Fig. 2. Different shells sedimentation and forming into the limestone

While a number of studies have applied paleoeco-
logical and sedimentological methods to elucidate 
the evolution and distribution of Miocene coral reefs 
and heterozoan carbonates in the Mediterranean area 
[58-64], there is a paucity of supporting geochemical 
analyses [65]. In the Phanerozoic period, the marine 
deposits of the oyster shell are accumulated over 
millions of years and this chemical deposition is 
helpful for the formation of limestone during this 
period and built up the sediment limestone layers 
are formed in the Middle Eocene period and Pleisto-
cene period. in Fig 2. Oyster shells sedimentation 
and forming the limestone.

Oysters belonging to the 'secondary soft-bottom 
dwellers' group often form spectacular shell beds in 
the fossil record [66-71]. With some notable excep-
tions where specimens are still preserved in life po-
sition [70,72,73], oysters in shell beds have usually 
been reoriented due to reworking by hydrodynamic 
agents. Reconstructed life positions of such dis-
placed oysters provide valuable information for deci-
phering the sedimentary and ecologic dynamics of 
oyster beds [74-78]. This, in turn, may help in the 
placement of oyster beds within the more general 
environmental framework, and within that of se-
quence stratigraphy [79].

3. Limestone origin:

Limestone made largely with calcium carbonate 
(CaCO3), usually in the form of calcite. Organic 
limestone formed from fragments of calcareous ani-
mal remains such as shells and coral. The most im-
portant and abundant of all sedimentary rocks that 
are employed commercially is usually of organic 
origin. Fossiliferous, marine sediments in oceans and 
fresh bodies of water, consisting of shells and skel-
etons of plants and animals, were gradually accumu-
lated through deposition, layer on layer, to form in 
some case, massive beds of limestone.

In the limestone formation proposes, the dissolu-
tion of aragonite from the oyster shell and reprecipi-
tation of carbonate with calcium ions under lime-
stone layers [80,81]. During this ‘differential dia-
genesis’ [82] aragonite fragments such as calcium 
and carbonate ions are re-precipitated as microcrys-
talline form and preserved within the limestone bed. 
The dissolution of molluscan aragonite shells and 
re-precipitated for the formation of limestone re-
ferred by the schematic diagram of Munnecke and 
Samtleben [82].

The aragonite containing oyster is required for the 
formation of limestone beds in Ordovician and 
Silurian periods. In the Fig. 3, shows the aragonite 
production by oysters and to evaluate the limestone 
formation in the Ordovician period [83].
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Fig. 3. Field photographs of limestone formation in the Ordovician period.

Limestone sediments are deposited by natural che-
mical reactions, in these process the dissolution of 
calcium carbonate fossils through the solvent action 
of carbon dioxide to form calcium bicarbonate, 
which was subsequently reprecipitated in carbonate 
form. Sometimes this carbonate precipitation process 
occurred with plant and animals organisms acting as 
the intermediary.

Huge coral reefs are gradually accumulated in this 
manner over thousands of years, and in the millions 
of years of geologic ages that have reshaped the ge-
ography of the world, they have formed mountains 
in the interior of continents and many mountains in 
Europe and North America are coralline in Origin. 
Pressure and heat have supplemented chemical pre-
cipitation in consolidating the minute carbonate par-
ticles into these imposing compact masses. In the 
crystalline form of limestone depends on oyster 
shells grains that are deposited. More quality lime-
stone formation occurs more often in the thickest 
masses or beds of up to several hundred feet thick. 
However, frequently these thick beds contain strata 
of relatively impure stone. Contamination of the 
stone with soil usually occurred at the commence-
ment of deposition, but in some instances, impurities 
were absorbed through pores and interstices during 
deposition. These impurities occur both vertically an 
laterally in the bed, but usually, a change in purity 

is much more gradual laterally than vertically.
The limestone is not of organic origin include sta-

lactites and stalagmites in caves and some oolitic 
limestone, travertine, and calcareous tufa. However, 
the presence of fossils in varying degrees is apparent 
in mostly commercial limestone, and this enables the 
geologist to determine from which geologic age it 
was derived. Often the prehistoric fossils are found 
intact in the stone in an almost perfect state of 
preservation.

4. Conclusions:

In this review has implicated for understanding 
the evolution and distribution of heterozoan and pro-
tozoan carbonate deposits in the Mediterranean dur-
ing the Miocene, and these results suggested that the 
deposition of calcium carbonate and evolution of 
limestone formation from oyster shells waste. The 
oyster shells aragonite to provide the calcium and 
carbonate source for microcrystalline formation in 
Paleozoic periods. Oysters shells, aragonite, and cal-
cite is the main source for the formation of sedi-
mentary limestone. Sedimentation rates can be in-
ferred from reconstructed oyster life positions. Toge-
ther with the taphonomic data, this offers valuable 
insights into the sedimentary dynamics of oyster 
shell beds, allowing to distinguish between different 
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sedimentary regimes, e.g., between those of dynamic 
bypassing and starvation.
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