• Title/Summary/Keyword: Waste form

Search Result 490, Processing Time 0.023 seconds

Characterization of Cement Waste Form for Final Disposal of Decommissioned Concrete Waste (해체 콘크리트 폐기물 최종처분을 위한 시멘트 고화체 특성 평가)

  • Lee, Yoon Ji;Hwang, Doo Seong;Lee, Ki Won;Jeong, Gyeong Hwan;Moon, Jei Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 2013
  • Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. And concrete waste was generated about 800 drums of 200 L. The conditioning of concrete waste is needed for final disposal. The concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled void space after concrete rubble pre-placement into 200 L drum. Thus, this research has developed an optimizing mixing ratio of concrete waste, water, and cement and has evaluated characteristics of a cement waste form to meet the requirements specified in disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10wt% as the optimized mixing ratio. Also, the compressive strength of cement waste form was satisfied that including fine powder up to maximum 40wt% in concrete debris wastes about 75%. As a result of scale-up test, the mixture of concrete waste, water, and cement is 75:10:15wt% meet the satisfied compressive strength because the free water increased with and increased in particle size.

Comparative Evaluation of Various Standard Methods in Leaching Test of Radioactive Waste Form (방사성고화체로부터의 $^{60}$ Co, $^{137}$ Cs 침출에 대한 표준시험법의 상호비교)

  • Kim, Ki-Hong;Ryu, Young-Gerl;Chung, Kyung-Ki;Hong, Kwon-Pyo;Lee, Nak-Hee;Jeong, Yi-Yeong;Koh, Duck-Joon;Kim, Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.93-103
    • /
    • 2003
  • IAEA, FT-04-020, and ANS 16.1, standard leaching test methods, were evaluated comparatively with their test results. Leaching index of $^{60}$ Co and $^{137}$ Cs by ANS 16.1 method for waste forms of paraffin and cement were above 6.0. Their leaching behavior were depending on the type of matrix and leachant. Leachability of $^{60}$ Co for cement waste form was higher in simulated seawater than do-mineralized water, and was higher in de-mineralized water for paraffin waste form. leachability of $^{60}$ Co was contrary to $^{137}$ Cs. Cumulative fraction leached of $^{60}$ Co was higher in order or IAEA > ANS > FT in a cement waste form.

  • PDF

Necessity of Waste Salt Regeneration in Pyroprocessing (I) - In View of Waste Reduction - (건식처리에서 염폐기물 재생공정 필요성 (I) - 폐기물 감량 측면 -)

  • 김정국;김인태;박근일;권상운;유재형;김준형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.180-185
    • /
    • 2003
  • The reductions in final waste form and material costs, which were induced from an introduction of salt waste regeneration system, have been estimated and compared with those of the present pyrochemical process, which is under development in KAERI. The results calculated on the basis of published data and proper assumption showed that the final waste form of LiCl waste from the Advanced Conditioning Process would be reduced about 3.7 to#ton HM (from 5.4 to 1.7 ton/ton HM). For the case of LiCl-KCl eutectic salt waste from the electro-refining process, the final waste form would be reduced 2.3 ton/ton U. Thus, these estimation suggested that the introduction of salt waste regeneration system was essential to improve the economical efficiency of the pyrochemical process.

  • PDF

A Development of the Stabilization Technology for the Solid Form of Radioactive Waste (방사성폐기물 아스팔트 고화체 안정화 특성연구)

  • 김태국;이영희;이강무;안섬진;손종식
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.202-206
    • /
    • 2003
  • In this study, a modified bituminization technology has been developed, which needs no grinding of the granular resin waste, and enables the solid form to keep its shape stability as good as that of a cemented solid from Also, the study intended to apply the developed technology to the practical treatment of radioactive resin waste. In the experiment, the granular type resin was used and the straight-run distillation bitumen with penetration rate 60/70 was used as the solidifying agent. The PE was used as the additive. The shape stability increased remarkably with the additive of PE, which act as a binder in the solid form. The shape of the solid form was maintained without failure during the long-term exposure test when the additive content of spent PE is more than 10wt%. The proper ranges of bitumen content, PE content and operating temperature are 30-50wt%, 10-20wt% and $180^{\circ}C$ respectively. The bituminized solid form of radioactive resin waste by the technology of this study has the remarkably superior quality than the conventional solid forms, partially for the shape stability.

  • PDF

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.