• Title/Summary/Keyword: Waste factor

Search Result 550, Processing Time 0.029 seconds

Inhibition of Verticillium Wilt in Cotton through the Application of Pseudomonas aeruginosa ZL6 Derived from Fermentation Residue of Kitchen Waste

  • Qiuhong Niu;Shengwei Lei;Guo Zhang;Guohan Wu;Zhuo Tian;Keyan Chen;Lin Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1040-1050
    • /
    • 2024
  • To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42℃), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ߡNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMߡNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.

Characteristics of Groundwater Pollution and Contaminant Attenuation at Waste Disposal Sites (폐기물 매립지 주변의 지하수 오염과 오염물질의 지연 특성)

  • 오석영;전효택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.1
    • /
    • pp.37-49
    • /
    • 1996
  • The objectives of this study are to investigate the groundwater and surface water contamination, to interpret the attenuation mechanism of contaminant transport, and to find the appropriate contamination indicator. at the two big landfill sites : Nanjido Landfill and Hwasung Landfill. Leachate from the Nanjido, th, Hwasung and the Kimpo waste disposal sites is characterized by high temperature (31.7-40.1$^{\circ}C$), high electric conductivity (14,650-32,800 ${\mu}$S/cm), somewhat higher pH(7.58-8.45) and low Eh (-119.4-20.4 mV), and is enriched in both major (Na$^{+}$, K$^{+}$, Ca$^{2+}$, Mg$^{2+}$, HC $O_3$$^{-}$, Cl$^{-}$) and minor (Mn, Sr$^{2+}$, Ba$^{2+}$, Li$^{+}$, F$^{-}$, Br$^{-}$) ions. Municipal solid waste leachate and industrial waste leachate are effectively discriminated by the content of S $O_4$$^{2-}$, Fe, and heavy metals. The attenuation mechanism of each component was assessed using the chemical analysis. Cl-normalizing process, WATEQ4F simulation, and preceding flownet analysis. Based on the calculation of Contamination Factor, K, Na, Ca, Mg, B, Zn, HC $O_3$, Cl, F, Br and TOC are effective contamination indicators in the Nanjido landfill site, and K, Na, Ca, Mg, B, S $O_4$, HC $O_3$, Cl, F, Br and TOC in the Habsburg landfill site Particularly, TOC is the best contamination indicator in landfill sites influenced by sea water.

  • PDF

The Evaluation of NOx Emission Factor from Large Combustion Facilities in Seoul (서울지역 대형연소시설에서의 질소산화물 배출계수 산정)

  • 조기찬;최종욱;박후경;유병태
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.78-83
    • /
    • 2000
  • The emission factor of nitrogen oxides(NOx) was evaluate to clarify the characteristics of NOx emitted from seven large combustion facilities in seoul area. The emission factors of NOx at A-1 and A-2 facilities of internal combustion engine were 66.957kgNOx/ton and 20.913kgNOx/ton, respectively. The emission factor of A-1 facility was higher than that of A-2 facility even same internal combustion engine, because A-1 facility adopted SCR(selective catalystic reactor) for reduction of NOx emission factor of A-2, A-4, and A-7 power generation boiler facilities were 4.300kgNOx/ton, 2.460kgNOx/ton and 1.796kgNOx/ton, respectively. The capacity of A-2 facility was about two times than that of A-4 and A-7. These emission factors were lower than those at facilities in other areas of korea, because of using low NOx burner of power generation boiler. The emission factors of NOx at A-3 and A-6 incinerator facilities were 0.147kgNOx/ton and 0.221kgNOx/ton which were lower than other facilities, respectively, because these facilities incinerate municipal solid waste of low heating value and uwe SCR for reducing NOx concentration.

  • PDF

A complete 3D map of Bell Glasstone spatial correction factors for BRAHMMA subcritical core

  • Shukla, Shefali;Roy, Tushar;Kashyap, Yogesh;Shukla, Mayank;Singh, Prashant
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3488-3493
    • /
    • 2022
  • Accelerator driven subcritical systems have long been discussed as facilities which can be used for solving the nuclear waste problem. The physics of these systems is very different from conventional reactors and new techniques had to be developed for reactivity monitoring. One such technique is the Area Ratio Method which studies the response of a subcritical system upon insertion of a large number of neutron pulses. An issue associated with this technique is the spatial dependence of measured reactivity which is intrinsic to the sub criticality of the system since the reactor does not operate on the fundamental mode and measured reactivity depends on the detector position. This is generally addressed by defining Bell-Glasstone spatial correction factor. This factor upon multiplication with measured reactivity gives the correct reactivity which is independent of detector location. Monte Carlo Methods are used for evaluating these factors. This paper presents a complete three dimensional map of spatial correction factors for BRAHMMA subcritical system. In addition, the dataset obtained also helps in identifying detector locations where the correction factor is close to unity, thereby implying no correction if the detector is used at those locations.

A Study on Anaerobic Treatment and Energy Recovery Technology of Food Waste by Using Hybrid Anaerobic Reactor (Hybrid Anaerobic Reactor를 이용한 음식물쓰레기의 혐기성처리 및 에너지 회수에 관한 연구)

  • Yoon Young-Bong;Park Jin-Young;Ju Jin-Young;Kim Myung-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.64-75
    • /
    • 2005
  • The total production of food waste was about 11,398ton/day('03) in Korea. Also, food waste was treated by landfill, incineration, reuse and anaerobic digestion. The method of food waste treatment depended primarily on landfill. However, the method of landfill causing social problems was prevented to treat food waste in the first of January 2005.12) Thus, anaerobic digestion is an important method to treat food waste because of possibility of energy recovery as methane gas. In this study, the possibility of food waste treatment containing high organic material and low pH in the one stage anaerobic reactor to save cost and time and energy recovery using $CH_{4}$ gas by the hybrid anaerobic reactor (HAR) was measured. The HAR was designed by combing the merits of the anaerobic filter (AF) to minimize the microorganism shock when food waste of very low pH was injected and up-flow anaerobic sludge blanket (UASB) to prevent from plugging and channeling phenomena by large suspended solids when semi solids were injected. Granule was packed in the section of HAR. The purpose of the BMP experiment was to measure the amount of methane generated when organic material was resolved under anaerobic conditions, to grasp bio resolution of organic material. Total accumulated methane production per VS amount was $0.471(m^{3}/\cal{kg}\;VS)$. So, the value was about $81.2\%$ of theoretical methane production which was $0.58(m^{3}/\cal{kg}\;VS)$ by elementary analysis and organic matter removal velocity (K) was $0.18(d^{-1})$. From these results, food waste was treated by anaerobic treatment. From this study, $CH_{4}$ generation from food waste (11,398 ton/day) could be estimated. By using an energy conversion factor of Braun's study, $5.97KWh/m^{3}\;CH4,\;60\%\;of\;CH_{4}$ gas generation, the amount of total energy producing food waste is to 6,727MWh/day. It could be confirmed that energy recovery using $CH_{4}$ gas was possible. Above these results, food waste containing organic matters of high concentration could be treated in HRT 30 days under an anaerobic condition, using the hybrid anaerobic reactor and reuse of $CH_{4}$ gas was possible.

The Development of Emission Factors of Greenhouse Gas from Middle and Small-Scaled RPF Incineration Facility by Concentration Measurement and Fuel Composition (농도실측 및 연료 성분조성에 의한 중소형 RPF 소각시설의 온실가스 배출계수 개발)

  • Na, Kyung-Ho;Song, Il-Seok;Choi, Si-Lim;Yoo, Jae-In;Park, Ik-Beom;Kim, Jin-Gil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.423-434
    • /
    • 2012
  • This study was carried out to develop for the emission factor of greenhouse gas (GHG) from medium and smallscaled incineration facility using RPF which is considering as a part of renewable energy in UNFCC. The actual concentration of the exhaust gas and the fuel composition of RPF were measured for the calculation of GHG emission factor in RPF incinerators, and were compared with the IPCC guideline. The $CO_2$ and $N_2O$ emission factors by the actual concentration of exhaust gas were $2.3575{\pm}1.0070tCO_2/tRPF$ and $0.0014{\pm}0.0014tN_2O/tRPF$ respectively. Also, $CO_2$ emission factor by the RPF composition was $2.7057{\pm}0.0540tCO_2/tRPF$. The GHG emission factor per energy by the actual concentration was $83.0867{\pm}26.0346tCO_2e/TJ$ which showed higher consistency with the GHG emission factor ($80.3967tCO_2e/TJ$) of waste plastic in the IPCC guideline (2006b). The $CO_2$ and $N_2O$ emission factor calculated in this study is considered as a meaningful data for GHG emission factor of RPF incineration facility because of not being developed in ROK.

Performance Evaluation and Design of DTMF Receiver with a Subset of $2^M$ Data Point

  • Kye, Sung-Su;Lee, Jae-Kyung;Yoon, Dal-Hwan;Min, Seung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1638-1642
    • /
    • 2003
  • In this paper, we have analyzed the power spectra and evaluate the performance of DTMF receiver by using the quick Fourier transform(QFT) algorithm. The economical signals detection of dual-tone multifrequency(DTMF) receiver is an important factor when developing cost-effective telecommunication equipment. In experimental results, it shows that reducing memory waste and can process the real-time.

  • PDF

The Relationship between the Factors and Performance of Environmental Management (환경경영요인과 성과에 관한 연구)

  • 김형욱;노지혜
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.202-206
    • /
    • 1998
  • The conventional management which had economic requirement such as productivity, competition, customer satisfaction, and return needs the environmental management in order to meet a change of the external situation such as the environmental requirement (such as resources reduction, pollution prevention, and waste reduction). However, there have been a few studies which try to investigate internal factor and to regard external factors as negative ones. This paper proposes the external factors are significant to the performance. Several hypotheses were developed regarding the relationships. Based on the collected data from 126 firms, the hypotheses were analyed with SPSS.

  • PDF

미생물 고정화 담체의 물리적 특성

  • 박영식;구기우
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.269-274
    • /
    • 1998
  • In order to develop of support medla for bloom reactor, physicochemical properties and attachability of surface of activated carbon, clay mineral, non-clay mineral, and waste mold sand were enamined. Measured physicochemical properties of materials were surface roughness, mean particle size, surface area, hydrophobicity, and surface charge. At a tested materials, activated carbon was the best attachable material and microorganisms were attached $20.1{\times}10^7CFU/cm^2$ at surface, compared with diatomaceous earth which were attached of $9.2{\times}10^7CFU/cm^2$ in our research, surface area and hydrophobicity show- ed more Influence than any other factor on attachment of microorganisms.

  • PDF

Simulation and performance evaluation of multi-channel DTMF receivers signal detection algorithm using LP (LP를 이용한 다중채널 DTMF 수신기 신호검출 알고리즘의 시뮬레이션 및 성능평가)

  • 윤달환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.26-32
    • /
    • 1997
  • The economical detection of dulal-tone multifrequency(DTMF) signals is an important factor when developing cost-effective telecommunication equipment. Each channel have independently a DTMF receiver, and it informs the detected signal to processors of the TDX. This paper proposes the linear prediction algorithm for the spectrum analysis. As a experimental resutls, it can obtain the improved performance to the DTMF receivers and reduce the real-time processing and memory waste.

  • PDF