• Title/Summary/Keyword: Waste electrical and electronic equipments

Search Result 5, Processing Time 0.019 seconds

A Study on the Standard Method to Calculate Recyclability Rate of Electrical and Electronic Equipments (전기전자제품의 재활용가능률 표준산정방법에 관한 연구)

  • Yi, Hwa-Cho;Kang, Hong-Yun;Shim, Kang-Sik;Kim, Jin-Han;Sim, Jae-Sul
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • European directive DIRECTIVE 2002/96/EC requires the minimum recycling & recovery rate on the waste electrical and electronic equipments (WEEE). But, they do not have guidelines on the calculation methods for recycling and recovery rate. A standard method to calculate recyclability and recoverability rate of products in the designing stage is necessary for the manufacturers so that they can reflect the calculated result to the improvement of product design. In this work, we investigated the existing calculation methods for the recycling and recovery rates of WEEE and the recyclability and recoverability rates of electrical and electronic equipments (EEE). A method for the calculation of recyclability and recoverability rates for the EEE products in the development stage was developed. The newly-developed calculation method was applied to some EEE products and the calculated results were evaluated.

Current Status on the Pyrometallurgical Process for Recovering Precious and Valuable Metals from Waste Electrical and Electronic Equipment(WEEE) Scrap (폐전기전자기기(廢電氣電子機器) 스크랩으로부터 귀금속(貴金屬) 및 유가금속(有價金屬) 회수(回收)를 위한 건식공정(乾式工程) 기술(技術) 현황(現況))

  • Kim, Byung-Su;Lee, Jae-Chun;Jeong, Jin-Ki
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.14-23
    • /
    • 2009
  • In terms of resources recycling and resolving waste disposal problems, it is very important to recover precious metals like Au, Ag and Pd and valuable metals like Cu, Sn and Ni from the scraps of waste electrical and electronic equipment(WEEE) that consists of detective electrical and electronic parts discarded during manufacturing electrical and electronic equipments and waste electrical and electronic parts generated during disassembling them. In general, the scraps of WEEE are composed of various metals and alloys as well as refractory oxides and plastic components. Precious and valuable metals from the scraps of WEEE can be recovered by gas-phase-volatilization, hydrometallurgical, or pyrometallurgical processes. However, the gas-phase-volatilization and hydrometallurgical processes have been suggested but not yet commercialized. At the present time, most of the commercial plants for recovering precious and valuable metals from the scraps of WEEE adopt pyrometallurgical processes. Therefore, in this paper, the technical and environmental aspects on the important pyrometallurgical processes through literature survey are reviewed, and the scale-up result of a new pyrometallurgical process for recovering the precious and valuable metals contained in the scraps of WEEE using waste copper slag is presented.

Improvement Plan for Calculation of Financial Contributions to Treatment of Waste Electrical and Electronic Equipments (폐전기·전자제품 처리에 대한 분담금 산정의 개선방안)

  • Kim, Han-Soo;Kim, Dae-Bong
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.45-50
    • /
    • 2020
  • Producer and distributor of electrical and electronic equipment may directly collect waste electrical and electronic equipment that falls under the class to which the equipment they distributed belongs, or may join KERC(Korea Electronic Recycling Cooperative) and have KERC fulfill the duty to collect on behalf. In this study, the system of calculating the financial contributions is reviewed, and then the defined problems and improvement plan are proposed. First, the standard operation and time should be set for collection and transportation costs, taking into account the operation by collection type. Second, since there is a difference in the screening method of the recycling center, the standard cost for the allocation factor should be set by reflecting the difference in these methods and the characteristics of the product line being processed. Third, it is necessary to secure a budget of sufficient size by determining the median or average value rather than the minimum value in the forecast model for visit collection. This study is suggesting in that it examines the problems of the allotted contributions paid by the mutual aid members to KERC and suggests ways to improve them.

A Study on the Establishment of the Standards for the Recycling Rate of Parts and Materials to Calculate Recyclability Rate of Electrical and Electronic Equipments (전기전자제품의 재활용가능률 산정을 위한 부품/소재의 재활용기준 정립에 관한 연구)

  • Yi, Hwa-Cho;Kang, Hong-Yun;Kim, Jin-Han;Shim, Kang-Sik;Kim, Jin-Ho;Han, Seong-Chul
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.232-241
    • /
    • 2008
  • European directive DIRECTIVE 2002/96/EC requires minimum recycling & recovery rates on waste electrical and electronic equipment (WEEE). We tried to make references for recycling and recovery rates of parts and materials used in electrical and electronic equipment (EEE), which could be used to calculate recyclability and recoverability rates of a product in the development phase. First, we investigated recycling processes of WEEE and recycling and recovery characteristics of parts and materials. Based on the investigation results and the european recycling data, we made a data base of parts and materials for calculation of recycling and recovery rates of EEE. The developed DB was improved by reflecting advices of european experts.

  • PDF

Proficiency testing of cadmium and lead in polypropylene resin (폴리프로필렌 수지 중 카드뮴과 납 측정 숙련도시험)

  • Cho, K.H.;Lim, M.C.;Min, H.S.;Han, M.S.;Song, H.J.;Park, C.J.
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.183-192
    • /
    • 2007
  • The various environmental regulation directives such as RoHS (restriction of hazardous substances in electrical and electronic products) and WEEE (waste from electrical and electronic equipments) are practically used as the technical barrier in international trade (TBT) of vehicles and electrical and electronic products recently. Regarding such an environmental regulation, Korea Research Institute of Standards Science (KRISS) organized a proficiency testing scheme to establish the reliability of measurement results produced by the relevant research institutes and test laboratories in Korea. Participants were 31 laboratories related to production of the electrical and electronic equipments and mobile vehicles. Two polypropylene samples of pellet type were employed as the proficiency testing materials (PTMs). Cadmium and lead were the analytes chosen among six components regulated in European Union (EU) RoHS directive. The PTMs were sent to the participants by post on September $1^{st}$ 2006, and deadline for results submission were October $10^{th}$ 2006. The results of each laboratory were evaluated in comparison with KRISS reference values using Robustic Z-score and Youden plot methods. The results of the various sample digestion methods were also compared. Most of participants reported good agreement within 10 % range of reference values. However, results from several laboratories showed significant biases from reference values. These laboratories should establish the quality assurance system for improvement of the measurement reliability.