• Title/Summary/Keyword: Waste disposal system

Search Result 435, Processing Time 0.032 seconds

Review and Application of the Radioactive Waste Certification Program (방사성폐기물 인증프로그램의 검토 및 적용)

  • Chung Hee-Jun;Whang Joo-Ho;Lee Jae-Min;Kim Heon;Jeong Yi-Yeong
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.126-133
    • /
    • 2005
  • Securing of radioactive waste disposal site and the related operations for disposal of low and intermediate level radioactive waste is being actively carried out in Korea. For disposal of radioactive wastes, physicochemical and radiological status and integrity of radioactive wastes must be secured first. Also, waste generators must provide this information to disposers. In addition, to secure the safety of waste disposal, waste acceptance criteria (WAC) and site specific waste acceptance criteria (SWAC) to consider characteristics of the disposal site are required. Radioactive wastes must be processed, generated, managed and transferred in accordance with these criteria. [1] For this, evaluation of properties on each of the radioactive wastes must be performed. However, in reality, atomic power plants are experiencing difficulties in relation to this due to the large quantity of radioactive waste generation. In order to solve this problem, IAEA and major overseas countries have developed, thus are using waste certification program (WCP) and quality assurance program (QAP) [2,3]. On the basis of these programs, radioactive waste certification program has been developed for safe disposal of radioactive wastes in Korea to satisfy the provisions specified in 'low and intermediate level radioactive waste transfer guidelines' of announcement No. 2005-18 from the Ministry of Science and Technology and specific site waste acceptance criteria (tentative plan). In addition, it is being planned to administer amendment on commercial atomic power plant related procedures and ensile staff training in order for early introduction and operation of radioactive waste certification system.

  • PDF

A Study on Recycling Technology of Wastes by Using PGV(Plasma Gasification & Vitrification) System (PGV(Plasma Gasification & Vitrification) 시스템을 통한 폐기물의 자원화 기술)

  • Rhyew, David;Kim, Young Suk
    • Plant Journal
    • /
    • v.4 no.4
    • /
    • pp.62-70
    • /
    • 2008
  • PGV(Plasma Gasification & Vitrification) system has been developed based on a pyrolysis melting gasification technology that provides the possibilities of acquiring renewable energy. As volume of wastes increases with the rapid industrialization and population growth, eco friendly disposal is drawing more social attention. Pyrolysis plasma technology is regarded as the best environmentally friendly process for the waste disposal among numerous waste disposal processes. Introduced in this paper is the behavior of the plasma torch and a computational fluid simulation dynamics is discussed for designing the melting furnace. Some PGV applications have also been discussed.

  • PDF

Development of a Computer Code for Low-and Intermediate-Level Radioactive Waste Disposal Safety Assessment

  • Park, J.W.;Kim, C.L.;Lee, E.Y.;Lee, Y.M.;Kang, C.H.;Zhou, W.;Kozak, M.W.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.41-48
    • /
    • 2004
  • A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides ate decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code.

The Development of the Waste Pneumatic Transportation System (진공식(眞空式) 쓰레기 파이프라인수송(輸送) System 개발(開發))

  • Park, Chung-Hyun;Kim, Bong-Geun;Kwon, Bong-kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.115-132
    • /
    • 1996
  • The present problems concerning the control of generation, storage, collection, transfer and transport, processing and disposal of the municipal waste are serious. And the transportation of the municipal waste is recently a important part of solid waste treatment and disposal. The waste pneumatic transportation system is expected to be an effective method for use in solving that problems. In this study, pneumatic transportation system was applied to 2,000-5,000 households of public/group housing for economic and technical analysis on the basis of data for working and operation. The proper equipment must be selected through economic and technical analysis for generation and properties of waste because the equipment in facilities of system is various. And the efficient operation method should be studied on the basis of information on the record of oeration. As the wet food waste clogs the pipeline, it is necessary to examine under the actual condition. The maximum unit waste generation rate based on the assumption that each household is comprised of 3.20 people is determined $2,340g/household{\cdot}day$, and it is included the 50% increase of seasonal and daily change.

  • PDF

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.

Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils (불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개)

  • Lee, Changsoo;Yoon, Seok;Lee, Jaewon;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model (BBM) can describe not only swelling owing to decrease in effective stress, but also wetting-induced swelling due to decrease in suction. And the BBM can also consider increase in cohesion and apparent preconsolidation stress with suction, and decrease in the apparent preconsolidation stress with temperature. Therefore, the BBM is widely used all over the world to predict and to analyze coupled thermo-hydro-mechanical behavior of bentonite which is considered as buffer materials at the engineered barrier system in the high-level radioactive waste disposal system. However, the BBM is not well known in Korea, so this paper introduce the BBM to Korean rock engineers and geotechnical engineers. In this study, Modified Cam Clay (MCC) model is introduced before all, because the BBM was first developed as an extension of the MCC model to unsaturated soil conditions. Then, the thermo-elasto-plastic version of the BBM is described in detail.

The ROK Nuclear Power Programme -Some Aspects of Radioactive Waste Management in the Nuclear Fuel Cycle-

  • West, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.194-213
    • /
    • 1980
  • The paper describes and quantifies the wastes arising in the nuclear fuel cycle for Light Water Reactors, Heavy Water Reactors and Fast Breeder Reactors. The management and disposal technologies are indicated, together with their environmental impacts. Both once-through and uranium-plutonium recycle systems are evaluated, and comparisons are made on the basis of tingle reference technologies for waste management, and for one gigawatt/year of electricity generation. Environmental impacts are assessed, particularly that of health and safety, and a reference costing system is applied purely as a basis for comparing the fuel cycles. From this study it call be concluded generally that the relative differences of the impacts of waste management and disposal between the selected fuel cycles are not decisive factors in choosing a fuel cycle. Employing the technologies assumed, the radioactive wastes from any of the fuel cycles studied can be managed and disposed of with a high degree of safety and without undue risk to man or the environment. The cost of waste management and disposal is only a few percent of the value of the electricity generated and does not vary greatly between fuel cycles.

  • PDF

Processing Characteristics of the Condensed Wastewater Resulting from Food Waste Disposal using a Submerged Polyethylene Hollow Fiber Membrane (음식물 소멸기에서 발생하는 응축폐수의 Polyethylene 침지형 중공사막을 이용한 처리 특성)

  • Ryu, Jae-Sang;Jeon, Tae-Bong;Kim, Jin-Ho;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study is conducted about the system that reduces organism after fermenting food waste from a food waste disposal equipment, divides gas made when food waste is fermented into gas and water, and then sends gas to a reactor again, condenses water, and apply it to the MBR system with submerged MF hollow fiber membranes. A submerged MF hollow fiber membrane module was installed to a food waste disposal equipment and a water treatment system made by Bio Hitech Co,. Ltd. to process food waste generated from a staff cafeteria in a H institute for 90 days. For initial seeding of a food waste disposal equipment, 305 kg of rice bran, chaff, and sawdust as well as 1,648 kg of food were input during the operation, and 1,600 L of condensed wastewater occurred. Fermented by-product after finishing running a food waste disposal equipment was 386 kg and its reduction was shown to be 80%. The organism was processed by applying submerged MF hollow fiber membrane module to the MBR system of condensed wastewater, and the result shows reduction rates were BOD 99.9%, COD 97.5%, SS 98.6%, T-N 54.6% and T-P 34.7% and the total colon bacillus was perfectly eliminated.