• Title/Summary/Keyword: Waste co-burning

Search Result 22, Processing Time 0.025 seconds

A Study on Estimation of Air Pollutants Emission from Agricultural Waste Burning (농업잔재물 노천소각에 의한 대기오염물질 배출량 산출에 관한 연구)

  • Kim, Dong Young;Choi, Min-Ae;Han, Yong-Hee;Park, Sung-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.167-175
    • /
    • 2016
  • In this study, we estimate air pollutants emission from agricultural waste burning. We investigated activities related to agricultural waste burning such as crop burning rates, location, and time by region. The average crop burning rates per square meter farmland of fruits, pulses, barleys, cereals, vegetables, and special crops were $273.1g/m^2$, $105.7g/m^2$, $7.4g/m^2$, $121.0g/m^2$, $290.7g/m^2$, and $392.9g/m^2$, respectively. We estimated air pollutants emissions with pre-developed emission factors. The estimated air pollutant emission of agricultural biomass burning were CO 148,028 ton/year, $NO_x$ 5,220 ton/year, $SO_x$ 11 ton/year, VOC 59,767 ton/year, TSP 21,548 ton/year, $PM_{10}$ 8,909 ton/year, $PM_{2.5}$ 7,405 ton/year, and $NH_3$ 5 ton/year. When these results compared with the entire emissions of national inventory (CAPSS), CO, VOC, $PM_{10}$ account for about 17.8%, 6.2%, 6.7% of the total, respectively.

GHG-AP Integrated Emission Inventories and Per Unit Emission in Biomass Burning Sector of Seoul (서울시 생물성 연소부문 온실가스-대기오염 통합 인벤토리 및 배출원단위분석)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.83-91
    • /
    • 2015
  • Biomass burning is known to be one of the main sectors emitting greenhouse gases as well as air pollutants. Unfortunately, the inventory of biomass burning sector has not been established well. We estimated greenhouse gas (GHG) and air pollution (AP) integrated emissions from biomass burning sector in Seoul during year 2010. The data of GHG and AP emissions from biomass burning, classified into open burning, residential fireplace and wood stove, meat cooking, fires, and cremation, were obtained from Statistics Korea and Seoul City. Estimation methodologies and emission factors were gathered from reports and published literatures. Estimated GHG and AP integrated emissions during year 2010 were $3,867tonCO_{2eq}$, and 2,320 tonAP, respectively. Major sources of GHG were forest fires ($1,533tonCO_{2eq}$) and waste open burning ($1,466tonCO_{2eq}$), while those of AP were meat cooking (1,240 tonAP) and fire incidence (907 tonAP). Total emissions by administrative district in Seoul, representing similar patterns in both GHG and AP, indicated that Seocho-gu and Gangseo-gu were the largest emitters whereas Jung-gu was the smallest emitter, ranged in $2{\sim}165tonCO_{2eq}$ and 0.1~8.31 tonAP. GHG emissions per $km^2$ showed different results from total emissions in that Gwanak-gu, Jungnang-gu, Gangdong-gu and Seodaemun-gu were the largest emitters, while Seocho-gu and Gangseo-gu were near-averaged emission districts, ranged in $0.2{\sim}21tonCO_{2eq}/km^2$. However, AP emissions per $km^2$ revealed relatively minor differences among districts, ranged in $2.3{\sim}6.1tonAP/km^2$.

Combustion and Emission Characteristics of High Calorific Industrial Waste Burned in a Small-scale Incinerator (고 발열량 산업폐기물을 처리하는 소형 소각로의 소각 및 배출 특성)

  • Lee, Gyo-Woo;Lee, Sung-Jun;Kim, Byung-Hwa;Lee, Seung-Woo;Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.42-48
    • /
    • 2002
  • Experiments on burning process of the industrial wastes were performed on a nozzle-type grate in the industrial waste incinerator with a capacity of 160 kilograms per hour. The temporal variations of temperatures and concentrations of the exhaust gas were measured and analyzed. The synthetic leather waste with the moisture content less than 2% was used. The experimental results show that the CO concentration in the exhaust gas exceeds the limit, 600 ppm, and the gas temperature fluctuates too much when 8 kg of waste was supplied every 3 minutes, equivalent to the capacity of 160kg per hour. That is a typical burning mode of this high-calorific industrial waste. When the smaller unit waste input, 6kg per every 2 min 15 seconds was supplied, we could reduce the fluctuations of the furnace temperature and improve the exhaust emissions, especially the CO concentration.

  • PDF

Hazardous Air Pollutants Emission Characteristics from Cement Kilns Co-burning Wastes

  • Pudasainee, Deepak;Kim, Jeong-Hun;Lee, Sang-Hyeob;Cho, Sung-Jin;Song, Geum-Ju;Seo, Yong-Chil
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • Emission characteristics of air pollutants from three commercially operating cement kilns co-burning waste were investigated. The major heavy metals emitted were mercury (Hg), zinc (Zn), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) Removal efficiency of the bag filter was above 98.5% for heavy metals (except Hg), and above 60% for Hg. Higher fractions of heavy metals entering the bag filter were speciated to cement kiln dust. On average, 3.3% of the -heavy metals of medium and low toxicity (Pb, Ni, and Cr) entering the bag filter were released into the atmosphere. Among highly toxic heavy metals, 0.14% of Cd, 0.01% of As, and 40% of Hg entering the bag filter were released into the atmosphere. In passing through the bag filter, the proportion of oxidized Hg in all cases increased. Emission variations of hazardous air pollutants in cement kilns tested were related to raw materials, fuel, waste feed and operating conditions. Volatile organic compounds detected in gas emissions were toluene, acrylonitrile benzene, styrene, 1,3-butadiene, and methylene chloride. Although hazardous air pollutants in emissions from cement kilns co-burning waste were within the existing emission limit, efforts are required to minimize their levels.

Flame Retardancy & Mechanical Properties of Mixed Waste $Plastic/Mg(OH)_{2}$ Composites Reinforced with PUB Powder (PUB 분말이 충전된 혼합폐플라스틱/$Mg(OH)_{2}$ 복합소재의 난연성 및 기계적 특성)

  • Jung, Ki-Chang;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.65-71
    • /
    • 2006
  • Flame retardancy and mechanical properties of polyolefinic mixed waste plastics/filler composites were investigated by using inorganic flame retardant(magnesium hydroxide) and PUB(polyurethane block) powder generated from cryogenic insulation process. All composites were obtained by extrusion and after compression molding. The effect of PUB powder on the properties of the composites was studied by tensile and izod impact test, morphology studies and flammability as LOI and UL94 vertical burning test and smoke density. The objective of this work is to obtain good mechanical properties from recycled PP composites with $Mg(OH)_{2}/PUB$ powder as fillers and optimum cost-performance balance, in addition to flame retardant characteristics.

The Characterization of Incomplete Combustion Products in Open Burning (노천소각에서 배출되는 불완전연소생성물 특성 연구)

  • Jung, No-El;Heo, Sun-Hwa;Jo, Myeong-Ran;Kim, Hyung-Chun;Jang, Se-Kyung;Hong, Ji-Hyung;Dong, Jong-In;Lee, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • It is very important to investigate air pollutants emissions emitted from open burning in order to control nonpoint sources effectively. In this study, we utilized incineration simulator proposed by U.S EPA and investigated emissions of CO, OC/EC, from household waste and biomass burning to estimate pollutant emissions by illegal incineration of biomass wastes. Emission factor of OC was estimated as 17.1 g/kg for rice strew, 23.5 g/kg for barley, 10.3 g/kg for corn stover, 4.3 g/kg for unseasoned wood, respectively. In case of EC, it was calculated as 1.6 g/kg for rice strew, 4.3 g/kg for barley, 1.4 g/kg for corn stover, 0.6 g/kg for unseasoned wood, respectively. Most of the pollutants emissions were emitted at the stage 1 and 2. In the stage 3, the pollutants concentration decreased gradually. To estimate emissions and build inventory for biomass burning, we need to know accurate activity data. We, therefore, used activity data of both survey results of previous study and statistical data of National Statistical Office. However, we need to perform additional experiments in the future to obtain more accurate activity data for various cases.

The review of municipal solid waste management in Nigeria: the current trends

  • Iorhemen, Oliver T.;Alfa, Meshach I.;Onoja, Sam B.
    • Advances in environmental research
    • /
    • v.5 no.4
    • /
    • pp.237-249
    • /
    • 2016
  • The management of municipal solid waste (MSW) is essential for every community; and, it is currently a major challenge in Nigeria. This paper provides an overview of the current MSW management trends in Nigeria and proposes new sustainable MSW management systems. Across Nigerian cities, MSW management is characterized by inefficient collection and transportation to disposal sites. Collection services do not reach some unplanned areas and slums due to poor street network. Even some planned areas are not reached by collection services. The informal sector contributes to waste collection, resource recovery and recycling; however, their activities are not recognized by the governments. Markets exist for recovered materials but more efforts need to be geared towards intensive recovery of materials and expansion of these markets. Despite the high proportion of putrescible matter in MSW, the only form of treatment commonly used currently is open burning for volume reduction. The high organic fraction presents a great opportunity for composting and anaerobic digestion. Ultimate disposal is currently done in open dumpsites. This needs to be upgraded to engineered landfills that are properly sited and adequately operated by well trained personnel. There is an emerging waste stream of concern, electronic-waste (e-waste), that requires urgent sustainable management as e-waste are currently co-disposed with other waste streams or burnt in the open posing detrimental health impacts.

Alternative Breaching Methods of the TRISO Fuels

  • Lee Jong-Hyeon;Shim Joon-Bo;Ahn Byung-Gil;Kwon Sang-Woon;Kim Eung-Ho;Yoo Jae-Hyung;Park Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.92-106
    • /
    • 2005
  • The head-end processes of spent TRISO fuel have been reviewed to understand the current status and the limitations of the reported processes. The main concerns in the TRISO treatment are to effectively breach and separate the carbon and SiC layers composing the TRISO particles. The crush-bum scheme which was considered in the early stages of the development has been replaced by the crush-leach or $CO_2$ burning and the succeeding CO decomposition process because of a sequestration problem of $CO_2$ containing $^{14}C$. However there are still many obstacles to overcome in the reported processes. Hence, innovative thermomechanical and pyrochemical concepts to breach the coating layers of the TRISO particle with a minimized amount of second waste are proposed in this paper and their principles are described in detail.

  • PDF

A Study on the Combustion Characteristics of Food Waste Using the Experimental Apparatus for Combustibility (소형 연소장치를 이용한 음식폐기물 연소 특성 연구)

  • Chae, JongSeong;Yang, SeungJae;Kim, SeokWan;Lee, JaeHee;Ohm, TaeIn
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.47-53
    • /
    • 2020
  • The amount of food waste and its water content depends on both the season and region. In particular, the water content typically varies between 73.8 wt.% and 83.3 wt.%, depending on the proportion of vegetables. Current food waste drying technologies are capable of reducing the water content to less than 10 wt.%, while increasing the heating value. Ongoing studies aim to utilize dried food waste as fuel. Food waste can be used to produce solid refuse fuel (SRF) by mixing it with various solid fuels or other types of waste. The analysis of specimens is very important when considering the direct combustion of food waste or its co-firing with solid fuels. In this study, the weight reduction of specimens after burning them in a small combustor, and compared with the results of thermogravimetric analysis (TGA). The concentration of various chemicals was also measured to define the characteristics of waste generation. Performed proximate analysis, elemental analysis, TGA, combustion experiment, the heating value, and derivative thermogravimetry (DTG).

Study on Burnability and Reactivity of High Al2O3 Content OPC Clinker for the Use of Industrial Waste (산업부산물 활용을 위한 고Al2O3 함량 OPC 클링커의 소성성 및 반응성에 관한 연구)

  • Kang, Bong-Hee;Choi, Jaewon;Ki, Tae-Kyoung;Kwon, Sang-Jin;Kim, Gyu-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.294-301
    • /
    • 2020
  • This study evaluated the burnability and hydration reaction of clinker burned with high Al2O3 content OPC to apply large amounts of industrial by-products in the cement manufacturing process. Specifically, after preparing a clinker with a high C3A content by burning the OPC raw material with a high content of Al2O3 in a laboratory electric furnace, the burnability of the clinker was evaluated through XRD Rietveld analysis and polarization microscopy, and clinker hydration reactivity was reviewed through the Isothermal conduction calorimetry analysis and the cement compressive strength. As a result, the kiln burning temperature for the production of high Al2O3 content clinker lower, and the compressive strength was equal to or higher than OPC. Therefore it was confirmed the possibility to manufacturing energy-saving high Al2O3 content clinker using a large amount of industrial by-products.