• Title/Summary/Keyword: Waste Solid Fuel

Search Result 174, Processing Time 0.022 seconds

A Study on the Manufacture of Bio-SRF from the Food Waste by Hydrothermal Carbonization (HTC) Process (열수가압탄화 공정에 의한 음식물폐기물로부터의 Bio Solid Reuse Fuel (Bio-SRF) 연료제조에 관한 실증연구)

  • HAN, DANBEE;YEOM, KYUIN;PARK, SUNGKYU;CHO, OOKSANG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.426-432
    • /
    • 2017
  • Hydrothermal carbonization (HTC) is an effective and environment friendly technique; it possesses extensive potential towards producing high-energy density solid fuels. it is a carbonization method of thermochemical process at a relatively low temperature ($180-250^{\circ}C$). It is reacted by water containing raw material. However, the production and quality of solid fuels from HTC depends upon several parameters; temperature, residence time, and pressure. This study investigates the influence of operating parameters on solid fuel production during HTC. Especially, when food waste was reacted for 2 hours, 4 hours, and 8 hours at $200^{\circ}C$ and 2.0-2.5 MPa, Data including heating value, proximate analysis and water content was consequently collected and analyzed. It was found that reaction temperature, residence time are the primary factors that influence the HTC process.

Co-Gasification of Woodchip and Plastic Waste for Producing Fuel Gas (연료용 합성가스 생산을 위한 바이오매스와 폐플라스틱의 혼합가스화)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.75-80
    • /
    • 2012
  • Gasification is a therm-chemical conversion process to convert various solid fuels into gaseous fuels under limited supply of oxygen in high temperature environment. Considering current availability of biomass resources in this country, the gasification is more attractive than any other technologies in that the process can accept various combustible solid fuels including plastic wastes. Mixed fuels of biomass and polyethylene pellets were used in gasification experiments in this study in order to assess their potential for synthesis gas production. The results showed that higher reaction temperatures were observed in mixed fuel compared to woodchip experiments. In addition, carbon monoxide, hydrogen, and methane concentrations were increased in the synthesis gas. Heating values of the synthesis gas were also higher than those from woodchip gasification. There are hundred thousand tons of agricultural plastic wastes generated in Korea every year. Co-gasification of biomass and agricultural plastic waste would provide affordable gaseous fuels in rural society.

Estimation of Characteristics Treatment for Food Waste and Valuable as Solid Refuse Fuel (SRF) using Bio-drying Process (Bio-drying 공법을 이용한 음식물류 폐기물 분해 특성 평가 및 고형연료로서의 가치 평가)

  • Jeong, Cheoljin;Park, Seyong;Oh, Dooyoung;Jang, Eun-Suk;Song, Hyoungwoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • In this study, water and organic treatment efficiency and operating characteristics (temperature, salinity effect) were evaluated when food waste with high water content was treated by Bio-dying method. In addition, the optimum conditions for producing pellets for evaluating the decomposition products as SRF(Solid Refuse Fuel) after Bio-drying and evaluating the use value of SRF as a solid fuel were analyzed. As a result, the temperature, $CO_2$ concentration, organic matter removal rate and weight reduction rate according to the daily dose were about 86% and 68% at the input of 2.4 kg/day. The optimal food waste input was estimated to be 2.4 kg/day. As a result of the pellet molding and produce, Pellets can be produced within 10~25% of raw material water content. It was judged that the water content of 25%, which showed the best quality results in terms of external shape maintenance and strength. The high calorific value of SRF of decomposition products after Bio-drying was more than 3,500 kcal/kg.

Investigating the Leaching Rate of TiTe3O8 Towards a Potential Ceramic Solid Waste Form

  • Noh, Hye Ran;Lee, Dong Woo;Suh, Kyungwon;Lee, Jeongmook;Kim, Tae-Hyeong;Bae, Sang-Eun;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.509-516
    • /
    • 2020
  • An important property of glass and ceramic solid waste forms is processability. Tellurite materials with low melting temperatures and high halite solubilities have potential as solid waste forms. Crystalline TiTe3O8 was synthesized through a solid-state reaction between stoichiometric amounts of TiO2 and TeO2 powder. The resultant TiTe3O8 crystal had a three-dimensional (3D) structure consisting of TiO6 octahedra and asymmetric TeO4 seesaw moiety groups. The melting temperature of the TiTe3O8 powder was 820℃, and the constituent TeO2 began to evaporate selectively from TiTe3O8 above around 840℃. The leaching rate, as determined using the modified American Society of Testing and Materials static leach test method, of Ti in the TiTe3O8 crystal was less than the order of 10-4 g·m-2·d-1 at 90℃ for durations of 14 d over a pH range of 2-12. The chemical durability of the TiTe3O8 crystal, even under highly acidic and alkaline conditions, was comparable to that of other well-known Ti-based solid waste forms.

Enhancement of the energy efficiency of hydrogen SOFC system by integrated cold energy utilization and waste heat recovery method

  • Nguyen Quoc Huy;Duong Phan Anh;Ryu Bo Rim;Lee Jin Uk;Kang Ho Keun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.160-161
    • /
    • 2022
  • Hydrogen is bridge fuel with high energy content and environmentally friendly to satisfy the stringent IMO regulation relating to greenhouse gas (GHG) emissions. There is growing interest in hydrogen in numerous nations and regions illustrated by an extensive range of research and development in technology. Regarding maritime applications, researchers have recognized the utilization of hydrogen as a fuel for fuel cells, a device that converts the chemical energy of the fuel to electrical energy. Solid oxide fuel cell (SOFC), with high working temperature, is easy to combine with the waste heat recovery cycles/devices to increase output power and thermodynamic performances as well. Furthermore, the cold energy from liquid hydrogen supplied to SOFC can also be used to generate more power. In this study, we proposed a SOFC integrated system with the idea of combining the waste heat recovery from the SOFC exhaust stream and cold energy utilization from LH2. The designation is aimed to target small-scale vessel which uses electric propulsion for short distances voyage.

  • PDF

Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam (폐스팀을 이용한 가역 고체산화물 연료전지의 기술적 경제적 해석)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Reversible solid oxide fuel cell (ReSOC) system was integrated with waste steam for electrical energy storage in distributed energy storage application. Waste steam was utilized as external heat in SOEC mode for higher hydrogen production efficiency. Three system configurations were analyzed to evaluate techno-economic performance. The first system is a simple configuration to minimize the cost of balance of plant. The second system is the more complicated configuration with heat recovery steam generator (HRSG). The third system is featured with HRSG and fuel recirculation by blower. Lumped models were used for system performance analyses. The ReSOC stack was characterized by applying area specific resistance value at fixed operating pressure and temperature. In economical assessment, the levelized costs of energy storage (LCOS) were calculated for three system configurations based on capital investment. The system lifetime was assumed 20 years with ReSOC stack replaced every 5 years, inflation rate of 2%, and capacity factor of 80%. The results showed that the exergy round-trip efficiency of system 1, 2, 3 were 47.9%, 48.8%, and 52.8% respectively. The high round-trip efficiency of third system compared to others is attributed to the remarkable reduction in steam requirement and hydrogen compression power owning to fuel recirculation. The result from economic calculation showed that the LCOS values of system 1, 2, 3 were 3.46 ¢/kWh, 3.43 ¢/kWh, and 3.14 ¢/kWh, respectively. Even though the systems 2 and 3 have expensive HRSG, they showed higher round-trip efficiencies and significant reduction in boiler and hydrogen compressor cost.

Performance Analysis of Methane Fueled Marine Solid Oxide Fuel Cell and Steam Turbine Hybrid Power System (선박동력용 SOFC/ST 하이브리드시스템의 성능 평가)

  • Lee, Kyung-Jin;Oh, Jin-Suk;Kim, Sun-Hee;Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.590-599
    • /
    • 2011
  • The electrification of the waste heat of fuel cell is necessary to enhance the efficiency of fuel cell system. For this purpose, the SOFC/ST(Solid oxide fuel cell/Steam turbine) hybrid system is suitable. The purpose of this work is to predict the performance of methane fueled SOFC/ST hybrid power system and to analyze the influence of operating temperature of stack, current density of stack, combustor outlet gas temperature, and boiler outlet gas temperature. According to the analysis, it is proved that making the best use of the waste heat of stack and minimizing the fuel consumption of combustor are essential for the high-efficiency of SOFC/ST hybrid system.

Landfill gas-landfill degassing system and methods of using landfill gas at Sarajevo landfill

  • Dzevad Imamovic;Amra Serdarevic
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.531-537
    • /
    • 2023
  • Municipal solid waste landfills are unpredictable bioreactors which in cases of mishandling and bad supervision presents numerous risks. The key to municipal waste landfills is to approach them from the point of prevention of the possible consequences, which means using methods of organized waste disposal, and also utilizing landfill gas, as an unavoidable consequence with disposal of municipal solid waste with a high share of biodegradable organic matter. This paper presents an overview about problems of solid municipal waste management, type and composition of waste, and an overview of waste management condition. Further, the problem of landfill and landfill gasses is described with the calculation models of landfill production, as well as the use of the SWM GHG Calculator and LandGEM software on a specific example of gas production for the central zone at Sarajevo landfill "Smiljevici". Main focus of this thesis is the analysis of potentials of greenhouse gas emission reduction measures from the waste management. Overview of the best available techniques in waste management is presented as well as the methodology used for calculations. Scenarios of greenhouse gas emission reduction in waste management were defined so that emissions were calculated using the appropriate model. In the final section of the paper, its description of the problem of collection and utilization the landfill gas at the sanitary landfill "Smiljevici", and implementation of the system for landfill gas collection and solution suggestion for the gasification and exploitation of gas. Energy, environmental and economic benefits can be accomplished by utilizing municipal solid waste as fuel in industry and energy and moreover by utilizing energy generation from landfill gas, which this thesis emphasizes.

Refined Fuel Production Using Municipal Sewage Sludge(I) - Preparation of Refined Solid Fuels from Organic Sludge - (하수슬러지의 정제 연료화 기술(1) - 유기성 슬러지의 정제 고체연료 제조 -)

  • Kang, S.K.;Lee, S.J.;Ryu, I.S.;Lee, K.C.
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 2007
  • Utilization of sewage sludge for industrial fuel should be considered in appropriate calory with low emission of environmental pollutants and the amount of sewage sludge for continuously long-time operation. For the low grade fuel(<4,000kcal/kg), one of proper processes is that coal and oil are added into sewage sludge to remove impurities and increase calory(>7,000kcal/kg) and the amount of fuel having sewage sludge. Recently, 2-step agglomeration has been attempted by secondarily agglomerate sewage sludge onto the primary nuclei formed by agglomeration of coal and oil. Furthermore, sawdust and waste oil can substitute about 1/3 each for coal and mineral oil consumed in this process, which will lead to securing alternative energy resources from environmental pollutants as well as cost reduction.

  • PDF

Design and Operation of FBC Based on Characteristics of Solid Waste Fuels (고체 폐기물 연료 특성을 고려한 유동층 연소로의 설계/운전의 고도화)

  • Choi, Jin-Hwan;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.212-219
    • /
    • 2002
  • Waste fuels, which originate from different sources, have unique combustion characteristics. The characteristics should be considered in applying FBC(fluidized bed combustor) technology to those fuels. The effects of fuel properties and operating conditions on FBC reactivity were investigated by means of carbon based parameter called mean carbon conversion time, rate of carbon conversion, fraction of carbon conversion and carbon recovery. And the basic physical and chemical mechanisms taking place in a fluidized bed were summarized. Major parameters in designing and operating FBC were evaluated in terms of the fuel properties and the combustion environment.

  • PDF