• Title/Summary/Keyword: Waste Salt Treatment

Search Result 67, Processing Time 0.03 seconds

Development of Curdlan Separation Process with Density Gradient Centrfugation (Density Gradient를 이용한 식품소재를 커들란의 분리공정개발)

  • 김봉영;이중헌
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.523-525
    • /
    • 2001
  • Curdlan is one biopolymer composed of ${\beta}$1,3-glucan and dissolved in a alkali solution but formed salt under neutral or acid condition. It was produced by Agrobactrium species and the separation process is necessary to make pure curdlan from the culture broth. The pH swing separation method was as feasible separation process using solubility changes with the pH difference. however, this method requires a lot of acid and alkali solution also produces a lot of waste. Therefore, an efficient process which could save energy and minimize toxic waste was developed. A density gradient separation process was developed in this research. High density sucrose solution was used as a separation agent. Curdlan was separated from the culture broth when the density of the sucrose solution was 1.15 g/L. Since the curdlan was produced on the surface of cell wall. the pre-treatment of culture broth was necessary. Curdlan recovery yield was increased up to 83% with the homogenization of the culture broth and further increased up to 87% with the treatment of alkai-acid solution.

  • PDF

Production of Yeast Biomass from Waste Brine of Kimchi Factory (김치공장의 배추 절임폐수를 이용한 효모 균체 생산)

  • Choi, Min-Ho;Park, Yun-Hee
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.331-336
    • /
    • 1998
  • The possibility of using waste brine from kimchi factory as a substrate for the production of the single cell protein was investigated. The growth of Pichia guilliermondii A9 isolated from waste brine was not inhibited by the NaCl up to 10% (w/v). BOD of the waste brine was reduced to one tenth after 24 hours of yeast culture. The addition of ammonium salt, phosphate, and micronutrients to the waste brine did not enhance the growth of P. guilliermondii A9. However, when the brine was enriched with juice from waste cabbage, the final cell mass increased proportionally with the amount of added organic material, suggesting a practical application for the treatment of two different types of waste produced during kimchi manufacturing.

  • PDF

Chemical Treatment of Low-level Radioactive Liquid Wastes(II) (The Determination of Cation Exchange Capacity on various Clay Minerals)

  • Lee, Sang-Hoon;Sung, Nak-Jun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.75-81
    • /
    • 1977
  • This experiment has been carried out to determine the pH dependent cation exchange capacity concerning the sorption phenomenon of long-lived radionuclides contained in low-level liquid radioactive waste on various clay minerals. The pH dependent cation exchange capacity determined by Sawhney's method are used to the analysis of sorption phenomenon. About 70 percent of the total cation exchange capacity is contributed by the pH dependent CEC due to the negative charge originated naturally in clays in case of clinoptilolite, vermiculite and sodalite. It is sugested in this test that the high neutral salt CEC, that is, highly charged clays would show good fixation yield. The removal of radionuclides at the pH range more than pH 9 is considered the hydroxide precipitation of metal ion rather than the cation exchange. The Na-clay prepared by the method of successive isomorphic substitution with electrolyte showed a considerable improvement in removal efficiency for the decontamination.

  • PDF

On the Alternative Incineration Technologies for the Treatment of Hazardous Waste (유해폐기물 처리용 소각 대체기술 동향)

  • Yang, Hee-Chul;Cho, Yung-Zun;Eun, Hee-Chul;Kim, Eung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.319-327
    • /
    • 2007
  • Incineration has been regarded as the best developed technology available for organically hazardous waste. However, permitting and siting incinerators to treat hazardous waste such as a waste containing PCBs is very difficult due to the public concerns associated with toxic air emissions. Recently, a lot of alternatives to an incineration have been developed and these technologies have the potential of alleviating public concerns by decreasing emissions of hazardous materials such as dioxins and furans. This paper reviews currently available alternative incineration technologies for various hazardous waste streams. Various categories of non-thermal and thermal alternative incineration technologies have been evaluated in terms of their process operating condition, applicability of a waste stream and their emission of secondary waste. Detailed descriptions of operating principles of several technologies are also provided.

Reclamation of the Closed/Abandoned Coal Mine Overburden Using Lime wastes from Soda Ash Production (부산석회를 활용한 휴ㆍ폐 석탄광산 폐기물의 안정화 및 식생복원)

  • 김휘중;양재의;옥용식;유경열;박병길;이재영;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.37-47
    • /
    • 2004
  • In Korea, over three hundreds of the coal mines were closed or abandoned due to the depression of the mining industry since the late 1980s. Many of them locate in the steep mountain valleys and the coal mine wastes had been disposed without a proper treatment From these mines, enormous amounts of coal mine overburdens have been abandoned in the slopes and the ample amounts of acid mine drainage (AMD) from either portal or overburdens have been discharging directly to the streams, causing the detrimental effects on soil and water qualities. Objectives of this research were to reclaim the coal mine overburdens using the lime waste cake from the soda ash production by stabilizing the overburden slopes, introducing the vegetation alleviate the environmental problems caused by the closed coal mines. The percentages of the grass distribution ratio (%) and the surface coverage ($\textrm{cm}^2$) in each treatment plot were determined during June to August after seed spraying grasses such as orchard grass (Dactylis glomerata L), Kentucky Bluegrass (Poa pratensis L.) and Eulalia (Miscanthus sinensis Anderss) at the end of May. The grasses covered only 15.5 % of the coal overburden plot at the early stage but the coverage was increased with time to 33% in August. Growth of such grasses was enhanced with the combined treatments of lime waste and topsoil resulting in the increased surface coverage by the grasses. The Increment of the surface coverage from June to August was higher with lime waste treatments. The distribution percentages and surface coverage were highest when the lime wastes were treated at 25 % of the lime requirement. This might be related with the high salt contents in the hire wastes. Results demonstrated that the amounts of lime wastes at 25% of the lime requirement were sufficient for neutralizing the acidic coal overburden and introducing the re-vegetation. Either layering between the coal waste and topsoil or mixing with coal overburdens could be adopted as the lime waste treatment method. The combined treatment of lime wastes and topsoil was recommended for re-vegetation in the coal overburden slopes. The lime wastes from the soda ash production might have a potential to be recycled for the reclamation of the abandoned coal mines to alleviate the environmental problems associated with coal mine waste.

  • PDF

Development of Resources Technique for the Marine Debris(II) - Development of thermal extrusion system for the resource of waste polystyrene buoy - (수거된 해양폐기물 자원화 기술 개발(II) - 어구용 폐스티로폼의 자원화를 위한 열적 감용시스템 개발 -)

  • Keel Sang-In;Kim Seock-Joon;Yun Jin-Han;Kang Chang-Gu;Yu Jeong-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.2
    • /
    • pp.35-40
    • /
    • 2002
  • By the introduction of cleaning and drying processes, thermal extrusion system for the volume reduction of used polystyrene buoys was developed. It was tested in the costal area for the determination of operational reliability. By the removal of oyster shells and cleaning of salt, waste polystyrene buoys was changed to the raw material of plastics. The lower cost of one-tenth compared with that of the outer request treatment is promising the practical use of waste buoys' volume reduction system.

  • PDF

Ginger Extract as Green Corrosion Inhibitor for Steel in Sulfide Polluted Salt Water

  • Fouda, Abd El-Aziz S.;Nazeer, Ahmed Abdel;Ibrahim, Mohamed;Fakih, Mohamed
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.272-278
    • /
    • 2013
  • Extract of ginger has been evaluated as a green inhibitor for the corrosion of steel in sulfide polluted NaCl solution using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. Potentiodynamic polarization measurements showed that this extract acts as a mixed type inhibitor but mainly inhibits the cathodic reaction. The inhibition efficiency was found to increase with inhibitor concentration reaching to approximately 83.9% using 250 ppm of ginger. Nyquist plots show a single capacitive loop in uninhibited and inhibited solutions. From EFM the causality factors are very close to theoretical values which indicate that the measured data are of good quality. The adsorption process of the studied extract on steel surface obeys Temkin adsorption isotherm. The results obtained from the different electrochemical techniques were in good agreement which prove the validity of these tools in measurement of corrosion rate. Ginger extract has no effect on Escherichia Coli and can be applied safely on waste water treatment plants.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

Pilot Scale Anaerobic Digestion of Korean Food Waste (파일로트 규모 음식쓰레기 2상 혐기소화 처리공정에 관한 연구)

  • Lee, J.P.;Lee, J.S.;Park, S.C.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.197-203
    • /
    • 1998
  • A 5 ton/day pilot scale two-phase anaerobic digester was constructed and tasted to treat Korean food wastes in Anyang city. The process was developed based on 3 years of lab-scale experimental results on am optimim treatment method for the recovery of biogas and humus. Problems related to food waste are ever Increasing quantity among municipal solid wastes(MSW) and high moisture and salt contents. Thus our food waste produces large amounts of leachate and bed odor in landfill sites which are being exhausted. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert material such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 days space time at pH of about 6.5. The second, methanization reactor part of which is filled with anaerobic fillters, converted the acids into methane with pH between 7.4 to 7.8. The space time for the second reactor was 15 days. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady state operation with the maximum organic rate of 7.9 $kgVS/m^3day$ and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about $230m^3$ of biogas with 70% of methane and 80kg humus. This process is extended to full scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  • PDF

Research on Reduction and Recycling of Food Waste by Separating Raw Food Waste and Earth Worm Composting in the Apartment (공동주택의 음식물 생쓰레기 분리배출과 지렁이퇴비화를 이용한 음식물쓰레기 감량 및 자원화 모델 연구)

  • Choi, Kwang-Soo
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.137-146
    • /
    • 2011
  • In this research, food waste source reduction model for apartment was investigated. In spite of prohibition of direct landfill of food waste and continuous efforts made by government and local government, food waste production increases steadily. Recycling ratio of the food waste increases every year, but its products have many problems like low quality, stability, salt, odor etc. Household occupies 63.3% of whole food waste production and this is subject to be a key factor to control food waste. We surveyed S apartment in Kwangju city as a model case, in which administrative office and women's association adopted clean plate eating, separation of raw food waste and earth worm composting as a series of method for source reduction and recycling inside the apartment. With the help of residents' participation and practice, food waste production decreased 15.6% from 0.31 g/capita/day in 2007 to 0.26 g/capita/day in 2009 (domestic average 0.30 g/capita/day). Separation of raw food waste and its composting using earth worm were very effective, and were subject to resolve the problems of present food waste treatment technologies. And earth worm composting was very useful in environmental, economical, societal and educational aspects. Instead of economical incentive, educational programs about food value, environmental problem and critical method for food waste separation were more effective for promotion of source reduction. From the analyses on the process and success factors in this model, we could conclude that leader's role was one of the key factors for the settlement of source reduction, and that was to understand the seriousness of the food waste and to seek solution, to test techniques, and to practice by oneself. Furthermore, networking and collaboration among residents, local government, NGO and local press promoted residents' participation, and it was through various education and investigation. Finally, source reduction and self recycling model of food waste in the apartment, that applies separating raw food waste and earth worm composting based on the collaboration among residents, local government, NGO, and local press, should be disseminated, and environmental policy also should be changed to make it possible.