• Title/Summary/Keyword: Waste Removal

Search Result 1,010, Processing Time 0.027 seconds

Nitrongen and Phosphorus Removal using Elutriated Acids of Food Waste as an External Carbon Source in SBR (음식물쓰레기 세정산발효액을 외부탄소원으로 주입한 SBR 공정에서 질소 및 인 제거)

  • Kwon, Koo-ho;Kim, Si-won;Lee, Min-jae;Min, Kyung-sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.462-467
    • /
    • 2006
  • An improvement of nitrogen and phosphorus removal in SBR using the elutriated acids from the food waste as an external carbon source was investigated in this study. The food waste was elutriated at $35^{\circ}C$ and pH 9 to produce the external carbon source. The elutriate of food waste were continuously collected. The elutriated liquid contained VFAs of 39,180 mg/L representing soluble COD of 44,700 mg/L. The SBR showed poor denitrification and EBPR (enhanced biological phosphorus removal) without elutriated VFAs addition. An average denitrification rate was 0.4 mg NOx-N/g MLVSS/day. In turn, EBPR was also inhibited by this poor denitrification because the remaining nitrate in anaerobic phase resulting a poor denitrification. On the other hand, the denitrification in anoxic phase significantly improved with an elutriated VFAs addition. Nitrate removal was 82% while the denitrification rate was 2.9 mg NOx-N/g MLVSS/day with 18.4 mL/cycle of elutriated VFAs. With the enhanced denitrification, nitrate concentration in anaerobic phase could effectively be controlled to a very low level. The elimination of nitrate inhibition in anaerobic phase resulted enhancement of EBPR. The specific phosphate release rate was $1.9mg\;PO_4^{3-}-P/g\; MLVSS/day$ with less than 0.5 mg/L of $PO_4^{3-}-P$ concentration.

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

Analysis of Efficiency of Artificial Wetland for Waste Water Treatment Past Six Year Operation (6년 동안 운영한 인공습지의 처리효율 분석)

  • Hur, Jai-Kyou;Nam, Jong-Hyun;Kim, Yong-Jeon;Kim, In-Seon;Choi, Kyoung-Suk;Choi, Seung-Ik;Ahn, Tae-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • For waste water treatment, artificial wetland was constructed in 1998. The size of artificial wetland is 20m${\times}$200m, with sand and gravel as media and Phragmites japonica was implanted. The removal rate of BOD, TN, and TP were 86%, 33% and 25% from June 2004 to November 2005 respectively, while those were 88%, 38% and 55% in 1999. Organic materials and nitrogen compounds are still effectively removed, after 6 years of construction, but the removal efficiency of phosphorus compounds is reduced. So for sustaining of artificial wetland as waste water treatment system, the removal efficiency of phosphorus compounds must be elevated.

Fluoride Removal from Aqueous Solutions using Industrial Waste Red Mud (산업폐기물인 적니를 이용한 불소 제거)

  • Um, Byung-Hwan;Jo, Sung-Wook;Kang, Ku;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.35-40
    • /
    • 2013
  • The present study was conducted to investigate the adsorption potential of red mud for fluoride removal. Different operation parameters such as the effect of contact time, initial concentration, pH, competing anions, seawater, adsorbent dose amount, and adsorbent mixture were studied. Nearly 3 hr was required to reach sorption equilibrium. Equilibrium sorption data were described well by Langmuir model and the maximum adsorption capacity of red mud was 5.28 mg/g. The fluoride adsorption at pH 3 was higher than in the pH range 5-9. The presence of anions such as sulfate, nitrate, phosphate, and bicarbonate had no significant effect on fluoride adsorption onto red mud. The fluoride removal by red mud was greater in seawater than deionized water, resulting from the presence of calcium and magnesium ion in seawater. The use of red mud alone was more effective for the removal of fluoride than mixing red mud with other industrial waste such as oyster shells, lime stone, and steel slag. This study showed that red mud has a potential application in the remediation of fluoride contaminated soil and groundwater.

Waste Load Allocation Method for Total Maximum Daily Load Program of a Polluted River (수질오염총량관리제 대상 오염심화 하천에 대한 오염부하량 할당방법)

  • Cho, Jae-Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.157-170
    • /
    • 2013
  • 수질오염총량관리제 시행 하천에 대해서는 객관적이고 과학적 방법으로 유역내 각 지역의 오염부하량을 할당할 필요가 있다. 본 연구에서는 대도시에서 배출되는 오염부하의 영향을 크게 받는 영산강수계의 중상류부를 대상으로 오염부하량 할당 방법에 대해 검토하였다. 오염부하량 할당을 위한 수질모델링은, 수질관리에 흔히 적용되어온 QUAL2E의 최근 판인, QUAL2Kw를 이용해서 수행하였다. 모델 적용 대상 지역의 각 reach의 수질매개변수는 QUAL2Kw의 자동보정 기능을 이용해서 추정하였다. 오염부하량 할당의 최적화는 유전알고리즘(genetic algorithm)을 이용하였고, 최소부하량 삭감법(least waste load removal allocation), 일정 부하량 이상 최소부하량 삭감법(least waste load removal over a certain value), 동일삭감률 할당법(equal removal rate)의 세가지 방법을 적용하고 비교 검토하였다. 동일삭감률 할당법은 다른 방법보다 유역 전체 부하량 삭감량이 훨씬 크기 때문에 효과적이지 않았고, 이 방법을 쓰기 위해서는 부하량 삭감대상인 각 소유역과 하수처리장을 그 규모와 특성에 따라 세분화할 필요가 있다. 동일삭감률 할당법의 적용시 세가지 범주로 나누어서 삭감률을 적용하였다. 오염부하량 삭감의 효율성을 감안할 때 최소 부하량 삭감법보다 일정 부하량 이상 최소부하량 삭감법이 더 적절한 것으로 검토되었다.

Anaerobic Treatment of Food Waste Leachate for Biogas Production Using a Novel Digestion System

  • Lim, Bong-Su;Kim, Byung-Chul;Chung, In
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • In this study, the performance of new digestion system (NDS) for the treatment of food waste leachate was evaluated. The food waste leachate was fed intermittently to an anaerobic reactor at increasing steps of 3.3 L/day (hydraulic retention time [HRT] = 30 day), 5 L/day (HRT = 20 day), and finally 10 L/day (HRT = 10 day). In the anaerobic reactor, the pH and alkalinity were maintained at 7.6 to 8.2 and 8,940-14,400 mg/L, respectively. Maximum methane yield determined to be 0.686L $CH_4$/g volatile solids (VS) containing HRT over 20 day. In the digester, 102,328 mg chemical oxygen demand (COD)/L was removed to produce 350 L/day (70% of the total) of biogas, but in the digested sludge reduction (DSR) unit, only 3,471 mg COD/L was removed with a biogas production of 158 L/day. Without adding any chemicals, 25% of total nitrogen (TN) and 31% of total phosphorus (TP) were removed after the DSR, while only 48% of TN and 32% of TP were removed in the nitrogen, phosphorus, and heavy metals (NPHM) removal unit. Total removal of TN was 73% and total removal of TP was 63%.

Fundamental Studies for the Removal and Recovery of Silver from Waste Photo-Developing Solution by Solvent Extraction (사진폐액으로부터 용매추출에 의한 은의 제거 및 회수에 대한 기초연구)

  • Lee, Sun-Hwa;Kim, Dong-Su;Lee, Hwa-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.122-127
    • /
    • 2006
  • Fundamental studies were carried out for an effective removal and recovery of silver from waste photo-developing solution by solvent extraction. The organic solvents examined for silver-extraction were ALIQUAT 336, D2EHPA, KELEX 100, and TBP. ALIQUAT 336, which is an anionic exchanger, was found to be efficient for the extraction of silver and the reason for this was considered to be due to the chloride ion contained in its structure. The extent of silver extraction was examined to increase with the concentration of ALIQUAT 336 until it reached 0.6 M and no more extraction was observed above this concentration. The extraction of silver by ALIQUAT 336 was found to reach its pseudo-equilibrium within a few minutes after the reaction started and additional slight increase in silver extraction was observed until 30 minutes of reaction time. The observed differences in silver extraction for artificial and actual waste solutions were considered to be based upon the different ionic form of silver-containing species in these solutions.

Piggery Waste Treatment using Partial Nitritation and Anaerobic Ammonium Oxidation (부분질산화와 혐기성 암모늄산화를 이용한 돈사폐수처리)

  • Hwang, In-Su;Min, Kyung-Sok;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.599-604
    • /
    • 2006
  • Nitrogen removal with the combined SHARON (Single reactor system for high ammonium removal over nitrite)ANAMMOX (Anaerobic ammonium oxidation) process using the effluent of ADEPT (Anaerobic digestion elutriated phased treatment) slurry reactor with very low C/N ratio for piggery waste treatment was investigated. For the preceding SHARON reactor, ammonium nitrogen loading and removal rate were $0.97kg\;NH_4-N/m^3_{reactor}/day$ and $0.68kg\;NH_4-N/m^3_{reactor}/day$ respectively. In steady state, bicarbonate alkalinity consumption for ammonium nitrogen converted to $NO_2-N$ or $NO_3-N$ was 8.4 gram per gram ammonium nitrogen. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. The loading and removal rate of the soluble nitrogen defined as the sum total of $NH_4-N$, $NO_2-N$ and $NO_3-N$ in ANAMMOX reactor were $1.36kg\;soluble\;N/m^3_{reactor}/day$ and $0.7kg\;soluble\;N/m^3_{reactor}/day$, respectively. The average $NO_2-N/NH_4-N$ removal ratio by ANAMMOX was 2.41. Fluorescence in situ hybridization (FISH) analysis verified that Candidatus Kuenenia stuttgartiensis were dominate, which means that they played an important role of nitrogen removal in ANAMMOX reactor.

Evaluation of refused tea waste activated carbon for color removal: Equilibrium and kinetic studies

  • Wijetunga, Somasiri;Gunasekara, Chathurika DFA
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • New technologies or improvement of the existing technologies are required to enhance the efficiency of removal of pollutants from wastewater. In this study we attempted to produce and test the activated carbon produced from the refused tea waste for the removal of dyes from wastewater. The objectives of this investigation were to produce activated carbon from refused tea waste by chemical activation, evaluate its performance for the removal of color produced from Acid Yellow 36, and the modeling of its dye removal with the kinetic study. The activation was performed in two steps namely carbonization at $375{\pm}25^{\circ}C$ and chemical activation with HCl at $800^{\circ}C$ under the absence of Oxygen. Adsorption isotherms and kinetic studies were performed with a textile dye, Acid Yellow 36, at different concentrations (20-80 mg/L). The maximum dye removal (~90%) observed at 80 mg/L dye concentration and it reduced at low dye concentrations. Maximum adsorption (71.97 mg/g) was recorded at 96 h at $29{\pm}1^{\circ}C$. Low pH increased the dye adsorption (pH=2; 78.27 mg/g) while adsorption reduced at high pH levels indicating that the competition occurs in between OH- ions and AY36 molecules for the adsorption sites in RTAC. The Langmuir isotherm model clearly explained the dye adsorption, favorably, by RTAC. Moreover, kinetic studied performed showed that the pseudo second order kinetic model clearly describes the dye adsorption. Based on the results obtained in this study, it can be concluded that RTAC can be used for the removal of textile dyes.

The Removal of Heavy Metals in Aqueous Solution by Hydroxyapatite (Apatite를 이용한 중금속 제거)

  • 강전택;정기호
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.325-330
    • /
    • 2000
  • The hydroxyapatite (HAp) for the present study was prepared by precipitation method in semiconductor fabrication and the crystallized at ambient to 95$0^{\circ}C$ for 30min in electric furnace. The ion-exchange characteristics of HAp for various heavy metal ions such as $Cd^{2+}, Cu^{2+}, Mn^{2+}, Zn^{2+}, Fe^{2+}, Pb^{2+}, Al^{3+}, and Cr^{6+}$ in aqueous solution has been investigated. The removal ratio of various metal ions for HAp were investigated with regard to reaction time, concentration of standard solution, amount of HAp and pH of solution. The order of the ions exchanged amount was as follws: $Pb^{2+}, Fe^{3+}>Cu^{2+}>Zn^{2+}>Al^{3+}>Cd^{2+}>Mn^{2+}>Cr^{6+}. The Pb^{2+}$ ion was readily removed by the Hap, even in the strongly acidic region. The maximum amount of the ion-exchange equilibrium for $Pb^{2+}$ ion was about 45 mg/gram of HAp. The HAp would seem to be possible agent for the removal of heavy metal ions in waste water by recycling of waste sludge in semiconductor fabrication.

  • PDF