• 제목/요약/키워드: Waste Removal

검색결과 1,012건 처리시간 0.034초

순산소의 MBR(Membrane Bio Reactor) 공정 적용을 통한 음식물류 폐기물 혐기성소화 유출수 처리 평가 (Evaluation of pure oxygen with MBR(Membrane Bio Reactor) process for anaerobic digester effluent treatment from food waste)

  • 박세용;김문일;박성혁
    • 유기물자원화
    • /
    • 제29권3호
    • /
    • pp.5-16
    • /
    • 2021
  • 본 연구에서는 MBR 공정 내 폭기조에서 순산소 용해와 일반 공기 폭기의 효율에 대한 비교·평가를 통해 순산소의 MBR 공정 적용성에 대해 평가 하였다. 순산소 장치에 의한 유기물 및 암모니아 산화 여부에 대해 평가하였으며, 실폐수(음식물류 폐기물의 혐기성소화 유출수) 적용 과포화산소용해 효율 평가를 진행하였다. 순산소용해와 일반공기폭기 방법의 SCOD, 암모니아 제거율과 속도는 비슷하였다. 하지만, 순산소 용해에 의한 미생물 수율이 일반공기폭기법에 의한 미생물 수율보다 약 0.03 g MLSS-produced/g SCOD-removed 낮아 잉여슬러지 처리 비용이 감소될 수 있을 것이라 판단된다. 음식물류 폐기물의 혐기성 소화 유출수의 고농도 유기물 (4,000 mg/L) 및 암모니아 (1,400 mg/L)의 제거율을 순산소용해와 일반공기폭기법을 비교한 결과, 순산소 용해기가 일반공기폭기법에 비해 유기물 제거율이 약 13% 가량 더 높게 평가되었다. 또한, MLSS의 경우 일반공기폭기법이 순산소장치에 비해 0.3배가량 높았다. 이는, 순산소장치의 경우 폭기조 내에 용존산소가 충분히 유지, 공급되기 때문에 슬러지 자산화가 고도로 진행된 결과로 판단되었다. 따라서, 고농도 유기물을 함유한 폐수 처리를 위한 방법으로는 기존에 많이 사용되었던 일반공기폭기법보다 순산소장치를 활용하는 것이 경제적인 면에서 더 유리할 것으로 판단되었다.

음식폐기물을 이용한 혐기성 수소 발효 시 초기 운전 성능에 대한 열처리 효과 (Effect of Heat Treatment on the Start-up Performance for Anaerobic Hydrogen Fermentation of Food Waste)

  • 이채영;이세욱;황선진
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.765-771
    • /
    • 2011
  • This study was conducted to investigate the effect of heat treatment on the start-up performance for anaerobic hydrogen fermentation of food waste. The result showed that hydrogen production was $0.61{\pm}0.31$ mol $H_2$/mol hexose with heat-treatment of food waste at $70^{\circ}C$ for 60 min whereas it was $0.36{\pm}0.31$ mol $H_2$/mol hexose without heat-treatment of one. The heat treatment of food waste enhanced hydrogen yield due probably to the increase of hydrolysis as well as the decrease of non-hydrogen fermentation microorganisms. The removal efficiency of carbohydrate in reactors regardless of heat treatment of food waste maintained over 90%. The hydrogen conversion efficiency from food waste was 1.7-6.3% with heat-treatment whereas it was 0.7-4.5% without heat-treatment. At the time of switchover from batch to continuous operation, lactate concentration was high compared to the n-butyrate concentration in anaerobic hydrogen fermentation reactor without heat-treatment. Anaerobic hydrogen fermentation of food waste with heat treatment was stable in start-up periods because lactate concentration could be maintained at a relatively low compared to n-butyrate concentration due to the decrease of non-hydrogen fermentation microorganisms.

The exfoliation of irradiated nuclear graphite by treatment with organic solvent: A proposal for its recycling

  • Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guarcini, Tiziana
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1037-1040
    • /
    • 2019
  • For the past 50 years, graphite has been widely used as a moderator, reflector and fuel matrix in different kinds of gas-cooled reactors. Resulting in approximately 250,000 metric tons of irradiated graphite waste. One of the most significant long-lived radioisotope from graphite reactors is carbon-14 ($^{14}C$) with a half-life of 5730 years, this makes it a huge concern for deep geologic disposal of nuclear graphite (NG). Considering the lifecycle of NG a number of waste management options have been developed, mainly focused on the achievement the radiological requirements for disposal. The existing approaches for recycling depend on the cost to be economically viable. In this new study, an affordable process to remove $^{14}C$ has been proposed using samples taken from the Nuclear Power Plant in Latina (Italy) which have been used to investigate the capability of organic and inorganic solvents in removing $^{14}C$ from exfoliated nuclear graphite, with the aim to design a practicable approach to obtain graphite for recycling or/and safety disposed as L& LLW.

향나무를 활용한 수중에서 메틸렌 블루의 제거 (Removal of Methylene Blue in Water Phase by Using Juniperus chinensis)

  • 최석순;하정협
    • 공업화학
    • /
    • 제29권3호
    • /
    • pp.278-282
    • /
    • 2018
  • 강원지역 산림에서 수목들의 가지치기로 인하여 발생되는 목재 폐기물의 재활용 처리 기술 개발이 요구되고 있다. 본 연구에서는 3종류(낙엽송, 향나무, 소나무) 폐목재를 활용한 흡착 실험에 의하여 수중에 함유된 메틸렌 블루의 제거능력이 우수한 생물흡착제로 향나무를 선별하였다. 그리고, 메틸렌 블루 제거효율을 향상하고자 0.4 g/100 mL의 향나무를 주입하여 반응 4 h 흡착하였을 때, 수중에 용해된 100, 200, 300 mg/L의 메틸렌 블루는 각각 98, 93, 81%의 제거효율을 나타내었다. 흡착제 농도 변화에 의한 흡착평형 자료들은 Freundlich식보다 Langmuir식에 잘 부합됨을 알 수 있었다. 또한, 메틸렌 블루 농도 변화에 의한 동력학적 실험으로부터, 생물흡착 속도식은 유사 2차 반응식에 보다 적합함을 알 수 있었다. 고농도 메틸렌의 블루 제거능력을 증가시키기 위하여, 300과 400 mg/L 메틸렌 블루를 210 rpm 교반속도로 4 h 운전하였을 때, 각각 92, 76% 제거효율을 나타내었다. 따라서 이러한 실험 결과들은 수중에 용해된 메틸렌 블루를 경제적으로 처리하는 새로운 생물흡착 기술에 유용하게 사용될 수 있을 것이다.

폐FCC 촉매의 재활용 과정에서 자력 선별법에 의한 불순물 제거 연구 (Removal of Impurities by Magnetic Separation from Waste Fluidized Cracking Catalyst for Its Reuse)

  • 반봉찬;이진숙;김동수
    • 자원리싸이클링
    • /
    • 제12권1호
    • /
    • pp.55-64
    • /
    • 2003
  • 현재 국내에서는 원유처리과정에서 발생하는 FCC 폐촉매로부터 금속 제거를 통한 촉매의 재활용은 시도된 적이 없으며 금속 불순물에 대한 분리 기술도 현재 정립되어있지 않은 상태이다. 현재 폐기물로서만 취급되어 온 FCC 페촉매로부터 유용성분의 회수 및 탈금속 가능성의 여부를 확인한다면 폐기물의 재활용 측면뿐만 아니라 폐기물의 효율적 처리, 그리고 경제적 소재화 측면에도 기여하는 바가 클 것으로 생각된다. 본 연구에서는 폐촉매에 부착된 Fe, Ni, V 등 금속의 물리화학적 성질에 따라 직접 혹은 산화 가열한 후, 자력 선별법을 통해 폐촉매로부터의 불순물 분리에 대한 조사를 수행하고 이에 따른 촉매의 재사용 가능성에 대해 검토하였다. 자력선밀 실험결과, 산화된 FCC 폐촉매에 비해 비산화 폐촉매가 상대적으로 자력에 의한 선별성이 높은 것으로 관찰되었으며, 스크린 매트릭스 방법보다 볼 매트릭스 방법을 적용하였을 경우 선별력이 양호한 것으로 나타났다. 선별효율은 자장세기의 증가에 따라 증가하는 경향을 보였으며, 볼 매트릭스 방법은 최대 51.10%의 선별력을 가지고 있는 것으로 나타났다. 선별된 시료들의 ICP 분석결과, V, Ni, Fe 의 순으로 금속성분이 존재하는 것을 관찰할 수 있었다.

Ca과 응집제를 보완한 MAP법을 이용한 폐수로부터의 인 자원 회수에 관한 연구 (A Study on the Phosphorus Resources Recovery using the MAP + PACI)

  • 김동하
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.273-278
    • /
    • 2007
  • Modern society has moved from a phosphorus recycling loop, where animal manure and human wastes were spread on farming land to recycle nutrients, to a once-through system, where phosphates are extracted from mined, non-renewable phosphate rock and end up either in landfill(sewage sludge, incinerator ash) or in surface waters. In this research, crystallization of nitrogen and phosphate with natural sources of $Mg^{2+}$ in synthetic water was tested. The operational parameters of pH, mixing time, and the magnesium molar ratio were investigated to find optimal conditions of the MAP precipitation using synthetic wastewater. The removal efficiency of phosphate increased with pH up to 11. By MAP precipitaiton of the synthetic waste water, 94% of the phosphate were eliminated at pH 11. It was found that at least 10 minutes mixing time was required and 20 minutes mixing time was recommended for efficient phosphate removal. High efficiency removal of phosphate was possible when the magnesium molar ratio was 1.0~2.0. The comparative study of different magnesium sources showed that coagulants (PAC) was the more efficient sources than only magnesium. The result showed that 97% of phosphate removal. In conclusion, coagulants (PAC) induced crystallization of struvite and hydroxyapatite was shown to be a technically viable process that could prove cost effective for removing phosphate in wastewater.

비이온 계면활성제를 이용한 복사고지의 중성탈묵 (Neutral Deinking of Photocopied Papers with Nonionic Surfactants)

  • 정영재;이학래
    • 펄프종이기술
    • /
    • 제33권2호
    • /
    • pp.58-67
    • /
    • 2001
  • MOW (Mixed Office Waste) mainly consisted of photocopied paper is being recycled to produce tissue or fine paper products. Toner particles that are fused and set on paper surface in photocopying process turns into large and plate-shaped particles after repulping which prevents them to be removed effectively in flotation deinking. The immediate purpose of this study is to find the effective deinking technology that increases the recycling potential of photocopied papers for manufacturing tissue and fine paper products. In this study the effects of pulping temperature and the type of hydrophobic groups of nonionic surfactants on the deinking efficiency of photocopied paper has been investigated. Particle size distribution of the toner particles after pulping and flotation, brightness, yield and ash removal were investigated. The size of toner particles after pulping increased as the pulping temperature was increased. When pulping at the low temperature finer toner particles were generated, however, greater amount of toner particles was found to attach to the fiber. When the pulping temperature was greater than Tg of the toner, the amount of coarse hairy particles increased. When nonionic surfactants with a double bond in hydrophobic groups were used, toner removal efficiency, brightness and ash removal were increased. As the addition level of surfactant was increased, yield decreased rather sharply without improving brightness.

  • PDF

Combination of air stripping and biological processes for landfill leachate treatment

  • Smaoui, Yosr;Bouzid, Jalel;Sayadi, Sami
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.80-87
    • /
    • 2020
  • Landfill waste decomposition generates a dark effluent named, leachate which is characterized by high organic matter content. To minimize these polluting effects, it becomes necessary to develop an effective landfill leachate treatment process. The objective of this study was to evaluate the performance of an innovative approach based on air stripping, anaerobic digestion (AD) and aerobic activated sludge treatment. A reduction of 80% of ammonia and an increase of carbon to nitrogen ratio to 25 were obtained, which is a suitable ratio for AD. This latter AD was performed in fixed bed reactor with progressive loading rate that reached 2 and 3.2 g COD/L/d for the raw and diluted leachate (1:2), respectively. The anaerobic treatment led to significant removal of chemical oxygen demand (COD) and biogas production, especially for the diluted leachate. The COD removal was of 78% for the raw leachate and a biogas production of 4 L/d with 70% methane content. The use of the diluted leachate led to 81% of COD removal and 7 L/d biogas with 75% methane content. It allowed a removal of 77% COD and more than 97% of the organic compounds present in the initial leachate sample.

정화조의 효율적인 운영을 위한 실험적 고찰 (An Experimental Investigation for Efficient Operation of Septic Tank)

  • 이장훈;이경수;고수훈;송민희;이수현;이용훈;강선홍
    • 상하수도학회지
    • /
    • 제26권1호
    • /
    • pp.123-129
    • /
    • 2012
  • A septic tank is a purification treatment system where night soil and other waste matter is converted into harmless material by the activities of bacteria. Effluent from the septic tank flows into the sewer pipe, and then this effluent affects the quality of water environment and makes foul smell. In this study, through the proper maintenance of septic tank it was tried to minimize the impact of sewer pipe on water quality and fouling smell. BOD removal rate from the septic tank's effluent which exceeded legal cleaning period was investigated for the proper maintenance. BOD Removal rate of the twelve septic tank's effluent is -62.5% to 43.9%. According to the result of BOD removal rate, septic tank cleaning should be done at least once a year. And the pathogenic coliform bacillus in the twelve septic tank's effluent is average 768,000 (MPN/$100m{\ell}$). The chlorine disinfection is needed to remove the pathogenic coliform bacillus in septic tank effluent.

Biofiltration of Air Streams Contaminated Hydrogen Sulfide : Performance Evaluation of Different Carriers

  • Jeong, Gwi-Taek;Lee, Gwang-Yeon;Lee, Kyoung-Min;Cha, Jin-Myoung;Joe, Yong-Il;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.456-462
    • /
    • 2005
  • The objective of this study was to develop a removal process by which $H_2S$ could be biologically removed from the odoriferous gases generated in the waste food recycling process. In order to develop this process we were first required to select a proper biofilter support protocol. When the selected biofilter equipment was then tested suing a synthetic odoriferous gas containing 600 ppm of $H_2S$, we noted a maximal removal rate of 658 $g-H_2S/m^3{\cdot}hr$, using polypropylene fibrils as supporting materials. Under identical experimental conditions, we obtained a value of 411.2 $g-H_2S/m^3{\cdot}hr$, using polyurethane as a support material. We also conducted a trial in which volcanic stone was utilized as a support material, and in this trial, we logged a maximal 105.1 $g-H_2S/m^3{\cdot}hr$ removal rate. As the result of our experiments, we concluded that polypropylene fibrils constituted the ideal material for the removal of $H_2S$ gas via biological treatment.

  • PDF