• 제목/요약/키워드: Waste Removal

검색결과 1,010건 처리시간 0.029초

방사성 액체폐기물 내 코발트 제거를 위한 전기응집공법의 활용 가능성 평가 (Assessment of Cobalt Removal from Radioactive Liquid Waste Using Electrocoagulation)

  • 고명수;김용태;김영광;김경웅
    • 자원환경지질
    • /
    • 제51권2호
    • /
    • pp.177-183
    • /
    • 2018
  • 본 연구는 원자력 발전시설에서 발생하는 방사성 액체폐기물 내 코발트의 제거를 위해 전기응집공법의 적용 가능성을 확인하였다. 전기응집공법은 전기화학반응을 이용하여 폐액 내 오염물질을 제거하는 방법으로 기존의 화학처리와 막공정의 단점을 보완하는 새로운 기술이다. 원자력 발전시설에서는 냉각 배관의 세척과정에서 코발트를 포함한 방사성 액체폐기물이 발생한다. 용액 내 코발트의 농도를 1 mg/L와 10 mg/L로 조성하여 전기응집공법을 적용한 결과 약 10분 이내에 코발트가 완전히 제거되었다. 또한 500 mL의 코발트 용액을 처리하는 과정에서 0.2 g의 슬러지가 발생하여 폐기물의 부피감용에 매우 효과적인 것으로 나타났다.

Scenedesmus sp.를 이용한 하수의 영양물질 제거에 관한 연구 (A Study on the Nutrient Removal of Wastewater Using Scenedemus sp.)

  • 이희자
    • 한국환경과학회지
    • /
    • 제8권4호
    • /
    • pp.443-449
    • /
    • 1999
  • This paper describe the working of algal culture system under batch and continuous feeding effluents in biological treatment process. The main objective of this study was the determination of fundamental opeating parameters such as dilution rates, light intensity, biomass concentration, nutrients contents, which engender an effective nutrient and organic waste removal process. The results of this research indicate that the algae system will remove effectively nutrient and organic waste. In batch cultures, 91.8% dissolved orthophosphate and 83.3% ammonia nitrogen were removed from the sewage in ten days. In continuous flow systems, a detention time of 2.5 days was found adequate to remove 91% T-P, 87% T-N and 95% $NH_3-N$. At 22-28$^{\circ}C$, 60 rpm, with an intensity of 3500 Lux, the specific growth rate, k was 0.59/day in batch experiments. The optimal growth temperature and nutrients rate (N/P) were respectively $25^{\circ}C$ and 3~5. With an abundant supply of untrients, it was possible to sustain substantial population densities in the temperature range of 22~28$^{\circ}C$.

  • PDF

폐기물 매립지 침출수 집.배수 시스템에서 필터 막힘에 관한 연구 (Filter Clogging of Leachate Collection and Removal System at Waste Landfill)

  • 고재학;이재영;노희정
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 추계학술발표회
    • /
    • pp.77-80
    • /
    • 1999
  • In this study, to evaluate the performance of leachate collection and removal system, the clogging of geotextile filter was tested and simulated for HELP. As a result of clogging test, the all permeability of geotextiles were decreased rapidly in several day. Also, $Ca^{2+}$ and CODcr concentrations were decreased during test. In model simulation for HELP, Daily discharge volume was shown insignificant change with the filter clogging. however, this result may effect on increasing of the hydraulic gradient in waste layer.r.

  • PDF

상향류식 고정생물막조를 이용한 오염소하천 정화에 있어서 유출수 농도 예측 (Prediction of Effluent Concentration for Contaminated Stream Purification using UFBR)

  • 박영식;문정현;안갑환
    • 한국습지학회지
    • /
    • 제4권1호
    • /
    • pp.87-95
    • /
    • 2002
  • The objective of this study is to treat contaminated stream by using a UFBR(upflow fixed biofilm reactor) packed with waste-concrete media. This system was tested from June 1999 to January 2000. Over $20.0^{\circ}C$, $COD_{cr}$ removal efficiency did not affected with organic loading rate while, $COD_{cr}$ removal efficiency decreased about 7% with decrease of temperature from $27.0^{\circ}C$ to $8.7^{\circ}C$. Under $16^{\circ}C$, TKN removal efficiency was affected with TKN loading rate. The proposed model apply to mass balance equation of fixed biofilm reactor for predicting effluent was well satisfied with measured value($R^2=0.94$).

  • PDF

마그네타이트 분말의 표면개질화에 의한 부유물질의 고속 제거 (Study on Rapid Removal of Suspended Solid by Modified Magnetite Powder)

  • 이혁희;박상원
    • 한국환경과학회지
    • /
    • 제12권9호
    • /
    • pp.1017-1023
    • /
    • 2003
  • The high speed elimination process of suspended solid was investigated to treat the pulp waste water by using surface modified magnetite particle and magnetic power. The effects of the various aluminum salts such as Al(NO$_3$)$_3$ㆍ9$H_2O$, AlC1$_3$ㆍ6$H_2O$, $Al_2$(SO$_4$)$_3$ㆍ13∼14 on the COD, BOD and suspended solid were systematically studied. It has been found that the 2.0 wt% of Al was most effective for the modification of Fe$_3$O$_4$ powder and then best for the treatment of pulp waste water, Optimum quantity of modified magnetite in this study was 12 wt%, and aging time was found to be 12 hours. Comparing with the conventional process, the required time for SS removal was drastically decreased. BOB and COD were also effectively removed when applied to the pulp wastewater.

5-Bromo-Ph4-BTPhen Ligand for Selective Removal of Strontium and Cobalt From Water

  • Jang, Jiseon;Harwood, Laurence M.;Cowell, Joe;Afsar, Ashfaq;Lee, Dae Sung
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2018년도 춘계학술논문요약집
    • /
    • pp.183-183
    • /
    • 2018
  • In this study, 5-bromo-2,9-bis(5,6-diphenyl-1,2,4-triazin-3-yl)-1,10-phenanthroline (5-bromo-Ph4-BTPhen) was synthesized and evaluated for its ability to remove major radionuclides ($Cs^+$, $Sr^{2+}$, and $Co^{2+}$). The synthesized ligand removed both $Sr^{2+}$ and $Co^{2+}$ from $1mg\;L^{-1}$ aqueous solutions with extraction efficiencies of up to 99% at neutral and alkaline pH. The $Sr^{2+}$ and $Co^{2+}$ removal efficiencies decreased as a consequence of the higher bonding strengths of competing metal ions to the N-donor atoms in the cavity of the ligand; competing divalent ions affected the $Sr^{2+}$ and $Co^{2+}$ removal efficiencies more than monovalent ions.

  • PDF

황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 2. 분리 미생물들을 접종한 담체를 충전한 바이오필터 운전 (Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 2. Performance of Biofilter Packed with Media Inoculated with a Consortium of Separated Microbes)

  • 임광희
    • Korean Chemical Engineering Research
    • /
    • 제52권2호
    • /
    • pp.240-246
    • /
    • 2014
  • 황화수소와 암모니아를 포함한 악취폐가스를 처리하기 위하여 여러 semi-pilot 바이오필터 운전 조건 하에서 Bacillus cereus DAH-1056과 Arthrobacter sp. KDE-0311를 고정한 semi-pilot 바이오필터 시스템을 운전하였다. Semi-pilot 바이오필터 운전조건에서 Thiobacillus sp. IW와 반송슬러지를 고정한 바이오필터의 황화수소 removal efficiency는 약 80%이었고 암모니아의 removal efficiency는 약 50% 정도이었던 반면에 Bacillus cereus DAH-1056과 Arthrobacter sp. KDE-0311를 고정한 본 연구에서 황화수소의 removal efficiency는 약 90%이었고 암모니아의 removal efficiency는 약 60% 정도이었다. 따라서 본 연구에서 Thiobacillus sp. IW와 반송슬러지를 고정한 semi-pilot 바이오필터의 경우를 기준으로 황화수소 및 암모니아의 removal efficiency가 각각 약 13% 및 20% 정도 제고되었다. 또한 본 연구에서는 암모니아의 최대 elimination capacity가 약 $35g/m^3/h$로서 Thiobacillus sp. IW와 반송슬러지를 고정한 semi-pilot 바이오필터의 경우보다 $3{\sim}5g/m^3/h$ 정도 제고되어 10~17% 더욱 높았다. 한편 본 연구의 황화수소의 최대 elimination capacity는 약 $63g/m^3/h$ 정도로 약 15% 증가하였다. 본 연구에서는 같은 inlet load의 황화수소라 할지라도 높은 농도의 황화수소가 낮은 농도의 황화수소보다 바이오필터의 암모니아 처리를 더 어렵게 하거나, 같은 inlet load의 암모니아라 할지라도 낮은 농도의 암모니아의 경우가 높은 농도의 암모니아보다 더 큰 removal efficiency와 elimination capacity를 갖는 것이 관찰되었다. 본 연구에서의 황화수소 최대처리용량은 황화수소와 암모니아를 동시처리 하였음에도 불구하고 황화수소만을 바이오필터로 처리한 선행연구에서의 황화수소 최대처리용량을 초과하거나 비슷하였다. 또한 본 연구에서는 바이오필터로 황화수소와 암모니아를 동시처리한 선행연구보다 더 높은 암모니아 제거용량을 보였다.

음식폐기물바이오차의 염분 제거 및 농업적 활용 (Salt Removal and Agricultural Application of Food Waste-Biochar)

  • 김신실;노준석;이재훈;최아영;이슬린;박유진;박종환;이영한;서동철
    • 한국환경농학회지
    • /
    • 제42권2호
    • /
    • pp.159-167
    • /
    • 2023
  • Food waste (FW) emissions in South Korea amounted to 4.77 million tons in 2021, and continue to increase. Various technologies have been developed to treat FW, with recent research focusing on biochar production through pyrolysis to reduce FW. However, the agricultural application of food waste-biochar (FWBC) is limited by the salt accumulated during pyrolysis. This study investigated salt removal from and the kinetic characteristics of FWBC, and subsequently evaluated its agricultural applications. FW was pyrolyzed at 350℃ for 4 h, and subsequently washed for 0.1, 0.25, 0.5, 0.75, 1, 5, 15, and 30 min to remove salt. FWBC had a salt concentration of 5.75%, which was effectively removed through washing. The salt concentration decreased rapidly at the beginning (1 min) and then slowly decreased, unlike in FW, in which the salt decreased continuously and slowly. The salt removal speed constant (K) was 1.5586 (Stage 1, FWBC) > 0.0445 (Stage 2, FWBC) > 0.0026 (FW). In a lettuce cultivation experiment, higher biomass was achieved using washed FWBC than when using unwashed FWBC and FW, and soil properties were improved. Overall, these findings suggest that although FW reduction using pyrolysis causes a salt accumulation problem, the salt can be effectively removed through washing. The use of washed FWBC can enhance plant growth and soil properties.

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • 제9권2호
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.

가축분뇨 및 음식물쓰레기의 혐기성 소화 병합처리 시 VS 제거효율과 메탄 발생량의 관한 연구 (A Study on VS Removal Efficiency and Methane Emission in Combined Anaerobic Digestion of Livestock Manure and Food Waste)

  • 최영익;지현조;정진희;정병길;김정권
    • 한국환경과학회지
    • /
    • 제27권9호
    • /
    • pp.737-742
    • /
    • 2018
  • Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane ($CH_4$) from the anaerobic digestion process; and third, to promote $CH_4$ production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), $CH_4$ production, and biodegradability.