• 제목/요약/키워드: Waste Paper

검색결과 1,940건 처리시간 0.026초

도시 폐기물로부터 알코올 생산 (II) - 물리적, 화학적 전처리된 폐지의 효소가수분해 조건 검토 - (The Production of Alcohol from Municipal Waste(II) - The Effects of Physical or Chemical Treatment on the Enzymatic Hydrolysis of Waste Paper -)

  • 임부국;양재경;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.65-70
    • /
    • 1997
  • The effects on the enzymatic hydrolysis of waste paper treated with physical or chemical treatment were investigated. To gain the higher saccharification rate, physical or chemical treatment are necessary in enzymatic conversion process of waste paper. The major deterrents to the effective utilization of waste paper for enzymatic conversion process are phenolic compounds, cellulose crystallinity and coating materials. In the enzymatic hydrolysis of waste paper, the deterrents through enzymatic conversion process can be eliminated by the physical or chemical treatment. This study was performed to obtain the optimal condition for enzymatic conversion process of non-treated waste paper and to review effects on enzymatic conversion process of waste paper treated with physical or chemical methods. In the aspect of saccharification rate, waste paper treated with 1.5% sodium hypochlorite was the most effective and in physical treatment methods, multi-stage treatment(autohydrolysis+refining treatment) was more effective than the other physical treatment.

  • PDF

Optimization of Concentrated Acid Hydrolysis of Waste Paper Using Response Surface Methodology

  • Jung, Ji Young;Choi, Myung Suk;Yang, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권2호
    • /
    • pp.87-99
    • /
    • 2013
  • Waste paper stands for the major biodegradable organic fraction of most of municipal solid waste. The potential of waste paper for glucose production was investigated in this current work. The pretreatment was accomplished by first subjecting waste paper to disintegration time (30 s), followed by ink removal of disintegrated waste paper using an deinking agent. Concentrated acid hydrolysis of waste paper with sulfuric acid was optimized to maximize glucose conversion. The concentrated acid hydrolysis conditions for waste paper (disintegrated time: 30 s, deinking agent loading : 15 ml) were optimized by using central composite design and response surface methodology. The optimization process employed a central composite design, where the investigated variables were acid concentration (60~80%), loading sulfuric acid (1~5 ml) and reaction time (1~5 h). All the tested variables were identified to have significant effects (p < 0.05) on glucose conversion. The optimum concentrated acid hydrolysis conditions were acid concentration of 70.8%, loading sulfuric acid of 3.2 ml and a reaction time of 3.6 h. This research of concentrated acid hydrolysis was a promising method to improve glucose conversion for waste paper.

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권3호
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

楮皮를 포함하는 絹紙의 特性 (Properties of the Handsheet Paper made from Silk Fibers and Paper Mulberry)

  • 강경돈;이기훈;정병희;류운영;남중희
    • 한국잠사곤충학회지
    • /
    • 제41권3호
    • /
    • pp.201-204
    • /
    • 1999
  • The silk/paper mulberry paper was prepared by recycling of the hard twisted silk waste and its mechanical properties was investigated. The silk waste was pretreated with sodium hydroxide(0.5%) and sodium carbonate(4%) to make it easy for beating and fibrillation. The silk/paper mulberry hand sheet paper has better mechanical properties of tearing strength and air permeability compared with the traditional and modified traditional paper. Treating with alkaline solution, the hard twisted silk waste could be used for an novel composite material.

  • PDF

환경을 고려한 선진국의 지.판지 포장재 적용 추세 (Application of Paper and Paperboard Packaging for the Environmental Issues in U.S.A and E.U)

  • 김재능
    • 한국포장학회지
    • /
    • 제3권2호
    • /
    • pp.33-42
    • /
    • 1996
  • The portion of the recycled paper and paper board packaging material has been the highest in recycled municipal solid waste since 1960 but still the portion of the discarded paper and paper board packaging material is the highest (32.3%) in whole discarded municipal solid waste in USA. In order to reduce more the discarded paper and paper board, the common municipal solid waste treatments were compared and recycling treatment was still recommended for the the discarded paper and paper board rather than of the waste treatments, landfill, incineration, and source reduction. In this paper, the obstacled of recycling treatment of the paper and paper board in municipal solid waste and new application of recycled paper and paper board packaging material are discussed.

  • PDF

Empirical Evaluation of Cellulase on Enzymatic Hydrolysis of Waste Office Paper

  • Park, Enoch Y.;Ikeda, Yuko;Okuda, Naoyuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권5호
    • /
    • pp.268-274
    • /
    • 2002
  • Enzymatic hydrolysis of waste office paper was evaluated using three commercial cellulases, Acremonium cellulase, Meicelase, and Cellulosin T2. Varying the enzyme loading from 1 to 10% (w/w) conversion of waste office paper to reducing sugar was investigated. The conversion increased with the increase in the enzyme loading: in the case of enzyme loading of 10% (w/w), Acremonium cellulase yielded 79%conversion of waste office paper, which was 17% higher compared to Meicelase, 13% higher than that of Cellulosin T2. Empirical model for the conversion (%) of waste office paper to re-ducing sugar (x) was derived from experimental results as follow, x = $kE^{m}t^{(aE+b)}$ where k, m, a, and b de-note empirical constants. E indicates initial enzyme concentration.

폐지섬유보강 시멘트 복합체의 최적배합비 도출 (Optimum Mix Design for Waste Newsprint Paper Fiber Reinforced Cement Composites)

  • 원종필;배동인;박찬기;박종영
    • 콘크리트학회논문집
    • /
    • 제13권4호
    • /
    • pp.346-353
    • /
    • 2001
  • 본 연구는 얇은 시멘트판 제품의 보강재로써 건조공정에 의해 생산된 폐지섬유의 최적 배합비를 도출하기 위하여 수행되었다. 이를 위해 순수 목질섬유 대비 폐지섬유의 대체수준을 세분화하여 실험을 실시하였으며, 슬러리-탈수 공법을 사용하여 폐지섬유보강 시멘트 복합체를 제조하였다. 본 연구는 실험적 연구와 반응표면 분석법을 활용한 통계적 분석을 통해 공정인자(가압, 비가압)과 섬유보강재 조건(섬유혼입율, 순수섬유 대체수준)을 최적화하였다. 최적화된 재생 폐지섬유 시멘트 복합체를 기술적으로 분석하였으며, 그 결과, 폐지섬유보강 시멘트 복합체의 성능과 경제적 측면에서 폐지섬유의 재활용이 가능하리라 판단된다.

한약재 및 한약 폐잔재를 이용한 기능지 개발에 관한 연구(제 1보) - 황기, 당귀, 인진쑥의 폐잔재를 이용한 기능지 개발 - (Studies on the development of functional paper with herbal medicine and herbal medicine waste(Part 1) -Development of functional paper with Astragalus membranaceus, Angelica acutiloba and Artemisia capillaris waste-)

  • 김경신;윤승락;노정관;조현진;김병수;김윤근
    • 펄프종이기술
    • /
    • 제45권3호
    • /
    • pp.9-19
    • /
    • 2013
  • This research was performed to make functional papers by using the waste of herbal medicine such as Astragalus membranaceus, Angelica acutiloba, and Artemisia capillaris as additives, and to evaluate their physical and optical properties of the manufactured paper. The physical and optical properties were decreased with the increase of the amount of herbal medicine. Of those manufactured papers, the functional paper with Artemisia capillaris showed the dramatic decrease in its physical properties. Adding the herbal medicine waste as additives developed the aesthetic pattern on the surface of the manufactured paper. The paper showing the black pattern on white surface was most favored. Different patterns could be made by changing the size of fibers and the amount of wastes. There was odor emitted from the paper due to the herbal medicine waste, which make the paper to have a potential for the diverse purpose. The herbal medicine waste can be applied to replace weighting agents in the manufacturing process of paper or used for the fuctional additives, resulting in the reduce of the quantity of a pulp consumed. The paper with 10-20% Angelica acutiloba waste were thought to have the most excellent quality on the process point of view.

펄프.제지산업의 환경적 특성과 대책 (Environmental Features and Actions of Pulp & Paper Industry)

  • 조준형
    • 펄프종이기술
    • /
    • 제41권3호
    • /
    • pp.13-21
    • /
    • 2009
  • Pulp and paper industry is a typical plant industry which usually consume lots of water and energy. Recently, environmental issues have become more important due to climate changes around the world, and reinforcement in the regulatory content in transfer and management of chemical material and that in environmental regulations for waste water and air. Paper industry is a source material recycle industry which recycle or reuse waste paper, recyclable wood, planned plantation or lumber from thinning and waste wood. Hence it can be said that paper industry is the representative industry for earth environment and of 21th century.

Contribution to the development of tiles made of paper board sludge

  • Velumani, P.;Manikandan, P.
    • Advances in environmental research
    • /
    • 제9권4호
    • /
    • pp.285-294
    • /
    • 2020
  • Growth of any country rest in the consumption of industrial wastes for its infrastructure amenities. Countries like India positively desires a vital utilization of industrial waste resembling paper sludge in the construction industry to make various building materials. Also, it is the duty of all civil engineers or researchers to attach them in mounting new materials from the waste dumped as land fillings. In every construction project, about 70% of cost accounts for the procurement of materials. If this, can be minimized consequently the cost of construction will certainly be condensed. Research has established that the waste paper sludge can be reused in the construction field for a probable scope. The construction diligences munch through a massive quantity of non-renewable resources. On the additional dispense, more waste paper board sludge ends up in landfills or dumpsites than those recycled. Consequently, waste paper sludge for use as a construction material composes a step towards sustainable development. Keeping this in mind an endeavor has been made to utilize paper board sludge acquired from the paper board industry and used with several pozzolanic and cementitious materials for a specific purpose. The addition of paper sludge has been varied from 0% to 20% by weight of cement. The tests done with the samples expose that four samples showed significant outcomes with remarkable strength and durability properties which guide to move for the next phase of research for producing lightweight tiles.