• Title/Summary/Keyword: Waste Lime

Search Result 158, Processing Time 0.023 seconds

Study on Mock-up test for field application of High Strength Concrete using Non-Sintered Cement (비소성시멘트를 사용한 고강도 콘크리트의 현장적용을 위한 모의부재에 관한 연구)

  • Kim, Han-Sik;Han, Da-Hee;Kim, Kwang-Ki;Paik, Min-Su;Mun, Kyoung-Ju;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.33-36
    • /
    • 2006
  • This Study is based on manufacture non-sintering cement(NSC) by adding phosphogysum and waste lime to GBFS as sulfate and alkali activators. This study also investigates the basic physical properties and duality of NSC, and evaluates its reusing possibility as construction materials. Therefore, we design 40MPa and 60MPa for compressive strength using OPC and NSC by binder. And There is a purpose to present fundamental data, applying in field and analyzing quality control of concrete using NSC according to rate of replace between OPC and NSC.

  • PDF

Pore Structure of Non-Sintered Cement Matrix (비소성 시멘트 경화체의 공극구조)

  • Mun Kyoung-Ju;Park Won-Chun;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.329-332
    • /
    • 2004
  • This study aims to manufacture non-sintering cement(NSC) by adding phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators. This study also investigates the pore structure of NSC Matrix. The result of experiment of pore structure properties, showed no considerable difference for total pore volume by cement mixing ratio but shows a large distinction in distribution of pore diameter. On the whole, pore-diameter of paste of NSC show that occupation ratio of pore diameter below 10mm is larger and is smaller than OPC and BFSC at pore diameter of over 10nm. Such a reason is that the hydrate like CSH gel and ettringite formed dense pore structure of NSC matrix.

  • PDF

Operational and Performance parameters of Anaerobic Digestion of Municipal Solid Waste (도시쓰레기 혐기성소화 운용 및 성능 지표)

  • Chung, Jae-Chun;Park, Chan-Hyuk;Son, Sung-Myung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.86-95
    • /
    • 2002
  • Anaerobic digestion of municipal solid waste(MSW) is recently getting attention due to energy generation and abatement of global warming. MSW has high solid content and low nitrogen content. Its major component is cellulose and hemicellulose. The conversion rate of organic portion of MSW to methane is approximately 50%, representing $0.2m^3/kg$ VS. Long hydraulic retention time is required for high solid content and inoculum should be mixed with the feed. When MSW is digested anaerobically, maximum limit of C/N ratio is 25 and the optimum concentration of $NH_3-N$ is 700mg/L. lime and sodium bicarbonate are used to adjust pH. Excess addition of sodium bicarbonate above 3,500mg/L will cause sodium toxicity. Thermophilic anaerobic digestion is effective in the control of pathogen although its operation and maintenance is difficult. To optimize the anaerobic digestion of MSW, it is necessary to understand the mechanism of microorganims involved in anaerobic digestion.

  • PDF

The Effect of Soil Conditioners on the Rutin Biosynthesis and the Yield of Buckwheat(Fagopyrum esculentum moench) (메밀의 rutin 생합성과 수량에 대한 토양개량제의 효과)

  • Kim, Hee-Kwon;Lee, Yeen;Kim, Byoung-Ho;Yun, Bong-Ki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.7-11
    • /
    • 1999
  • This experiment was conducted to investigate the effects of soil conditioners, such as lime, borax, poultry waste sawdust manure (P.W.S.M) and mixed oil cakes (M.O.C), on the rutin biosynthesis and the yield of buckwheat. The content of phosphorus ($P_2O_5$) in buckwheat plants before flowering was higher at before flowering than that of flowering time at all plots. The content of nitrogen (N), potassium ($K_2O$), calcium (CaO) and magnesium (MgO) was lower at before flowering than those of flowering time at all plots. The contents of rutin in buckwheat plant at flowering time was higher than that at before flowering content of rutin in leaf was higher than that in stem. The contents of rutin in buckwheat plant was the highest at the plot treated with borax (B) compared to other plots. Correlation between rutin and amino acid was positive in buckwheat leaf, while it was negative in buckwheat stem. The yield of buckwheat was 21 percent higher at the plot treated with borax than the plot applied with the other three ingredients.

  • PDF

Use of Sewage Sludge Ash for Construction Material (건설재로서 하수슬러지 소각재의 활용)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.25-34
    • /
    • 2003
  • This paper is focused on an experimental study in order to investigate the utilization of sewage sludge ash as the cover and liner materials for the waste disposal landfill or as construction materials. A series of tests were performed to evaluate the basic properties, compaction, compressive strength, consolidation, permeability, and CBR of sewage ash. Specially, clay bricks were made as increasing replacement ratio of sewage ash (such as 5, 10, 15, 20, 25, 30%). And tests were fulfilled for its quality. Bentonite and lime were used as the additives to improve permeability properties of sewage sludge ash. As a result of tests, it was shown that the permeability coefficient decreases as increasing bentonite content and the percentage of bentonite was roughly needed 20% to keep the permeability coefficient below $1{\times}10^{-7}cm/sec$. The results of unconfined compression tests show that sewage ash meets the criteria of the unconfined compression strength for cover material. It was shown that the compressive strength decreases as increasing the replacement ratio of sewage sludge ash and the maximum replacement ratio of sewage sludge ash to satisfy the quality standards of the third degree bricks was about 15%.

  • PDF

Determining Heavy Metal (loid) Stabilization Materials and Optimum Mixing Ratio: Aqueous Batch test

  • Oh, Seung Min;Oh, Se Jin;Kim, Sung Chul;Lee, Sang Hwan;Ok, Yong Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.540-546
    • /
    • 2014
  • Acid mine drainage sludge (AMDS) has been classified as mine waste and generally deposited in land. For this reason, studies have been conducted to examine the possibility of recycling AMDS as an amendment for heavy metal stabilization in soil. The main objective of this study was to evaluate heavy metal stabilization efficiency of AMDS comparing with the widely used lime stone. Also, optimum mixing ratio was evaluated for enhancing heavy metal stabilization. AMDS and limestone were mixed at the ratio of 0:100, 25:75, 50:50, 75:25, and 100:0 with five different heavy metal solutions ($100mg\;L^{-1}$ of $NaAsO_2$, $CdCl_2$, $CuCl_2$, $Pb(NO_3)_2$, and $ZnSO_4{\cdot}7H_2O$). The amendments were added at a rate of 3% (w/v). In order to determine the stabilization kinetics, samples were collected at different reaction time of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 minutes. The heavy metal stabilization by AMDS was faster and higher than those of limestone for all examined heavy metals. While limestone showed only 20% of arsenic (As) stabilization after 1,024 minutes, 96% of As was stabilized within 1 minute by AMDS. The highest effect on the stabilization of heavy metal (loid) was observed, when the two amendments were mixed at a ratio of 1:1. These results indicated that AMDS can be effectively used for heavy metal stabilization in soil, especially for As, and the optimum mixing ratio of AMDS and lime was 1:1 at a rate of 3% (w/v).

Recovery of Soy Oligosaccharides using Calcium Oxide (산화칼슘을 이용한 대두 올리고당의 회수)

  • Choi, Yeon-Bae;Kim, Kang-Sung;Sohn, Heon-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.225-229
    • /
    • 1995
  • Soy oligosaccharide, a low calorie sugar, which is known to improve the intestinal microbial flora, was recovered from the waste of soymilk process by Steffen process. To remove protein contaminants, prior to the Steffen process, pH of the sample was adjusted to $3.5{\sim}4.0$ or calcium chloride was added 8%(w/w) per sugar. Both pretreatment processes were found to remove about $25{\sim}30%$ of the protein initially present in the sample. Using the Steffen process, as much as 85% of soy oligosaccharide could be recovered as a saccharate form. The amounts of calcium chloride and lime used were 20%(w/w) and $100{\sim}120%$(w/w) per total sugar, respectively. After the sugar was desorbed by $CO_{2}$, the final yield of oligosaccharide was 80% while 80% of protein were removed from the original solution. The composition of sugar was similar to that of soybean cooking water.

  • PDF

Evaluation of the Effect of Different Application Ratios of Lime-treated Fertilizer Mixed with Food Waste on Chinese Cabbage (Brassica rapa L.) Yield and Soil Chemical Properties (음식물류폐기물 혼합 석회처리비료 사용량에 따른 배추(Brassica rapa L.) 수량 및 토양 화학성 평가)

  • Young-Jae Jeong;Sang-Geum Lee;Seong-Heon Kim;Sang-Ho Jeon;Youn-Hae Lee;Soon-Ik Kwon;Jae-Hong Shim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.81-89
    • /
    • 2023
  • Lime-treated fertilizer (LTF) is manufactured using the lime stabilization method with food waste. LTF is effective in neutralizing acidic soil, improving nutrient and organic matter content in soil, and increasing crop productivity. However, excessive use of LTF in agricultural land can have undesirable effects, such as reduced crop growth and nutrient accumulation in soil. This study was evaluated the effect of different application ratios of LTF on the crop yield index (%), nutrient (N, P2O5, K2O) uptake index (%), and soil chemical properties. The following treatments were applied: untreated (UT), NPK (NPK), NPK+calcium hydroxide (CH), and NPK+1-, 2-, 4-, and 8-times of LTF (LTF1, 2, 4, and 8). The yield index for LTF1 was the highest among different LTF treatments. Moreover the yield index for spring and winter cabbage in LTF1 treatment was 10% and 21% higher, respectively, than that in NPK treatment. The yield and nutrient indices were decreased with the increase in LTF application ratio. The soil pH and EC tended to increase with the increase in LTF ratio, and were the highest at 8.2 and 2.1, respectively, after cultivation for LTF8 (P<0.05). With the increase in soil pH, the soil inorganic nitrogen (NH4-N, NH3-N) and available phosphate (Av. P2O5) levels were decreased (P<0.05). Our results suggest that LTF1 (643 kg 10a-1) is an appropriate ratio for improving soil chemical properties and increasing crop yield.

Soil Neutralizer Selection for Phytostabilzation Using Miscanthus sinensis Anderss. in Heavy Metal Contaminated Soil of Abandoned Metal Mine (폐금속광산 중금속오염토양에서 억새를 이용한 식물안정화공법을 위한 토양개량제 선정)

  • Jung, Mun Ho;Ji, Won Hyun;Lee, Jin Soo;Yang, In Jae
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.517-528
    • /
    • 2020
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Miscanthus sinensis Anderss. for phytostablization in heavy metal contaminated soil of abandoned metal mine. M. sinensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of M. sinensis showed that AMDS 20% was more effective than other amendments for phytostablization, and AMDS 10% showed second effectiveness. Waste lime+oyster, bottom ash and fly ash were also improved compared to control. Mobility of some heavy metal was increased by treatments. Therefore, it is necessary of preparatory investigation of soil condition to select soil amendment to apply on-site phytostablization.

The Effects of Calcium-type Catalysts on the Pyrolysis Reaction of Raw Material Resin for Producing from Waste Vinyl to Fuel-oil (폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해반응에서 칼슘계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Cho, Tae-Ho
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • The effects of calcium type catalysts addition on the thermal decomposition of low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) resin have been studied in a thermal analyze. (TGA, DSC) and a small batch reactor. The calcium type catalysts tested were calcinated dolomite, lime, and calcinated oyster shell. As the results of TGA experiments, pyrolysis starting temperature for LDPE varied in the range of $330{\sim}360^{\circ}C$ according to heating rate, but EVA resin had the 1st pyrolysis temperature range of $300{\sim}400^{\circ}C$ and the 2nd pyrolysis temperature range of $425{\sim}525^{\circ}C$. The calcinated dolomite enhanced the pyrolysis rate in LDPE pyrolysis reaction, while the calcium type catalysts reduced the pyrolysis rate in EVA pyrolysis reaction. In the DSC experiments, addition of calcium type catalysts reduced the melting point, but did not affect to the heat of fusin. Calcinated dolomite reduced 20% of the heat of pyrolysis reaction. In the batch system experiments, the mixing of calcinated dolomite and lime enhanced the yield of fuel oil, but did not affect to the distribution of carbon numbers.