• 제목/요약/키워드: Waste Heat Recovery Boiler

검색결과 30건 처리시간 0.023초

분리형 히트파이프의 저발열량 연료가스 예열시스템에 대한 적용연구 (Application of a Large Scale Heat Pipe System to Preheating the Fuel Gas of Low Heating Value)

  • 박흥수;유갑종;이진호;이용국
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1085-1097
    • /
    • 1999
  • A separate heat pipe system capacity of 3,700kW has been developed and applied to preheating the blast furnace gas for recovery of the waste heat from boiler. The system is designed to preheat the blast furnace gas up to $126^{\circ}C$ by using tho boiler exhaust gas of which temperature is $180^{\circ}C{\sim}220^{\circ}C$. The arrangement of the fin tubes as well as the shape of the fin has been carefully determined to minimize the fouling problems. The heat pipe system was found to be stable in circulation of the working fluid and the range of the temperature variation of the preheated blast furnace gas was within $10^{\circ}C$. It was proved through a long-term test that the selected tube arrangement and the shape of the fins are proper to prevent the fouling problems and that the pay-back period of the system Is within one year.

A Preliminary Study on Direct Ethanol SOFC for Marine Applications

  • Bo Rim Ryu;To Thi Thu Ha;Hokeun Kang
    • 한국항해항만학회지
    • /
    • 제48권2호
    • /
    • pp.125-136
    • /
    • 2024
  • This research presents an innovative integrated ethanol solid oxide fuel cell (SOFC) system designed for applications in marine vessels. The system incorporates an exhaust gas heat recovery mechanism. The high-temperature exhaust gas produced by the SOFC is efficiently recovered through a sequential process involving a gas turbine (GT), a regenerative system, steam Rankine cycles, and a waste heat boiler (WHB). A comprehensive thermodynamic analysis of this integrated SOFC-GT-SRC-WHB system was performed. A simulation of this proposed system was conducted using Aspen Hysys V12.1, and a genetic algorithm was employed to optimize the system parameters. Thermodynamic equations based on the first and second laws of thermodynamics were utilized to assess the system's performance. Additionally, the exergy destruction within the crucial system components was examined. The system is projected to achieve an energy efficiency of 58.44% and an exergy efficiency of 29.43%. Notably, the integrated high-temperature exhaust gas recovery systems contribute significantly, generating 1129.1 kW, which accounts for 22.9% of the total power generated. Furthermore, the waste heat boiler was designed to produce 900.8 kg/h of superheated vapor at 170 ℃ and 405 kP a, serving various onboard ship purposes, such as heating fuel oil and accommodations for seafarers and equipment.

우분 고체연료 연소 보일러와 유기랭킨사이클을 결합한 난방 및 발전 시스템의 수치해석 모델 개발 (Development of a Numerical Analysis Model for Heating and Power Generation System Combining a Cattle Manure Solid Fuel Combustion Boiler and the Organic Rankine Cycle)

  • 신동환;이형원;정훈;최준영;조종영
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.61-71
    • /
    • 2023
  • The necessity of energy utilization using livestock manure has been proposed with the decrease in domestic agricultural land. Livestock manure solid fuel has been investigated as a promising energy resource owing to its convenient storage and use in agricultural and livestock fields. Additional electricity production is possible through the integration of a biomass combustion boiler with the organic Rankine cycle (ORC). In this study, a mathematical system model of the cattle manure solid fuel boiler integrated with the ORC was developed to analyze the components' performance under variable operating conditions. A sensitivity analysis was conducted to confirm the electrical efficiency of the ORC turbine and the applicability of this system. The minimum required waste heat recovery rate was derived considering the system marginal price and levelized cost of electricity of the ORC. The simulation results showed that, in Korea, more than 77.98% of waste heat recovery and utilization in ORC turbines is required to achieve economic feasibility through ORC application.

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facility

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권4호
    • /
    • pp.17-26
    • /
    • 2001
  • Simulation was conducted using TRNSYS to evaluate the thermal performance of a facility. This facility has a condensing-type heat exchanger which is able to recover the latent energy for the purpose of reducing the heating energy in winter. The boiler and chiller are selected based on the annual peak loads and controlled to maintain the facility at the set temperature of 14~$17^\circ{C}$. Supplied energy by the boiler and recovered energy by the heat exchanger were calculated as a function of number of pass through heat exchanger, kind of fuel and hot water velocity. Simulation results show that about 20% of the total heating load can be recovered by the heat exchanger and the amount of latent heat is increasing with the number of pass. This means that the efficiency of the waste energy recovery system can be increased by using a condensing-type heat exchanger rather than a traditional sensible heat exchanger.

  • PDF

기관 폐열 회수를 위한 열교환기의 Baffle 길이 변경에 따른 성능 예측에 관한 수치 해석적 연구 (An Investigation on Flow and Structural Characteristics of Heat Exchanger in Rankine Steam Cycle for Co-generation System)

  • 류규현;김구성;이영훈;강석호;박기범
    • 신재생에너지
    • /
    • 제9권4호
    • /
    • pp.32-39
    • /
    • 2013
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop is used to recover waste heat from exhaust gas and a low temperature loop is used to recover waste heat from cold engine coolant. This paper has dealt with a layout of low temperature loop system, the review of the velocity contours through numerical analysis. According to the result of analysis, the designed heat exchanger. And comparing with flow analysis results, LT Boiler is safe to operation.

실증규모 체인스토커식 RDF전용보일러 개발 (Development of a Commercial-scale RDF Boiler with Chain type Stoker)

  • 최연석;김병길;노남선
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.813-816
    • /
    • 2009
  • A commercial-scale RDF boiler that its burning capacity is 400 kg-RDF/hr and steam production capacity is 2 ton/hr. It has a chain type stoker and waste heat recovery system. Heat exchanger is vertical water-pipe so that soot blowing and removal is convenient during operation. Dry scrubber, bag filter and activated carbon tower have been installed for the reduction of air pollutant gases and dust. Analysing data of pollutants from stack such as $SO_x$. $NO_x$ and dioxin shows so good results that the boiler system could comply the regulated emission limits.

  • PDF

IoT 마이크로 보일러에 대한 기초 연구 (Basic Study on the IoT Micro Boiler)

  • 장성철
    • 사물인터넷융복합논문지
    • /
    • 제8권1호
    • /
    • pp.23-29
    • /
    • 2022
  • 본 연구의 개발대상 제품은 선박 및 발전용 EGB(Exhaust Gas Boiler-폐열보일러) 종류로써 디젤 엔진, 가스 엔진, 가스 터빈 등에서 나오는 배기 가스의 여열을 이용하여 물을 가열하여 고온·고압의 증기나 온수를 발생시키는 열회수 장치이다. 발생된 증기나 온수는 선박의 선실 난방 및 온수 시설이나 HFO Heating, 터빈 구동에 필요한 동력원으로 사용된다. 폐열보일러의 원리는 여열을 가진 고온의 배기 가스가 보일러의 Tube를 통과하면서 물을 데우는 역할을 한다. 데워진 물은 스팀 형태로 선실이나 터빈장치로 보내어져 사용하게 되는 구조이다. 본 연구에서는 EGB의 열전달 부품인 관형 튜브를 Plate Tube로 대체하여 열전달 표면을 늘려 효율을 극대화하는데 목표가 있다.

열병합시스템 경제성 평가 프로그램의 개발 및 적용에 관한 연구 (Development and Application of an Economic Assessment Program of Cogeneration Systems)

  • 박차식;김용찬
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1547-1554
    • /
    • 1998
  • The object of this study was to develop an economic assessment program for the optimal design of the cogeneration systems composed of combining engine, generator, waste heat recovery exchanger, absorption chiller, and boiler, etc. The energy demand categorized by electric power, heating, cooling and water supply was determined by statistical data of the existing cogeneration systems. An economic assessment was performed by comparing the total cost of cogeneration system with that of non-cogeneration system. The total cost was evaluated by adding initial investment to operational cost considering efficiency of equipment, cost of equipment, fuel and electricity. To confirm the validity of the developed program, a hotel building with an area of $127,960m^2$ was selected, and the simulated results were compared with the measured data. The difference between the simulated and the measured values for the selected hotel building was approximately 12% for annual electric consumption.

吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구 (A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle)

  • 박종구;양옥룡
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.77-86
    • /
    • 1992
  • 본 연구에서는 사이클은 터빈 출구로 부터 배출되는 폐열을 최대한 회수하여 얻은 증기를 연소기내에 분사시킴으로써 부가적인 압축기 및 비출력의 상향을 기할수 있다.아울러 폐열이용 암모니아 흡수기 냉동기를 구동하여 압축기 입구 온도를 낮 춤에 의해 열효율 및 비출력의 증대는 물론 대기온도 변화에 따른 기관 성능의 변동을 감소시킬 수 있다.