• Title/Summary/Keyword: Waste Facilities

Search Result 763, Processing Time 0.027 seconds

Assessment of the Cause and Pathway of Contamination and Sustainability in an Abandoned Mine (폐광산 오염원인 분석 및 오염경로, 향후 지속가능성에 대한 평가)

  • Kim, Min Gyu;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.411-429
    • /
    • 2018
  • Daeyoung mine (also called "Daema mine") produced gold and silver from mainly gold- and silver-bearing quartz veins. The mine tailings are a waste hazard, but most of the tailings were swept away or dispersed throughout the area around the mine long before the tailing dump areas were transformed into agricultural land. Soil liner and protection facilities, such as retaining walls, were constructed in the mine area to prevent the loss of tailings. The content of the tailings is 3,424.41~3,803.61 mg/kg, which exceeds the safety standard by a factor of 45. In addition, contamination was detected near agricultural areas and in the sediments in downstream drainage channels. A high level of As contamination was concentrated near the waste tailings yard; comparaable levels were detected in agricultural areas close to streams that ran through the waste dump yard, whereas the levels were much lower in areas far from the streams. The contamination in stream sediments showed a gradual decrease with distance from the mine waste yard. Based on these contamination patterns, we concluded that there are two main paths that affect the spread of contaminants: (1) loss of mine waste, and (2) the introduction of mine waste into agricultural areas by floods after transportation by streams. The agricultural areas contaminated by mass inflow of mine waste can act as contamination sources themselves, affecting other agricultural areas through the diffusion of contaminants. At present, although the measured effect in minimal, sediments in streams are contaminated by exposed mine waste and surface liners. It is possible for contaminants to diffuse or spread into nearby areas if heavy elements trapped in soil grains in contaminated agricultural areas leach out as soil solution or contaminant particles during diffusion into the water supply.

Heating Performance Analysis of the Heat Pump System for Agricultural Facilities using the Waste Heat of the Thermal Power Plant as Heat Source (발전소 폐열을 이용한 농업시설용 히트펌프시스템의 난방 성능 분석)

  • Kang, Youn Koo;Kang, Suk Won;Paek, Yee;Kim, Young Hwa;Jang, Jae Kyung;Ryou, Young Sun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.317-323
    • /
    • 2017
  • In this study, the heating performance and the energy saving effect of the heat pump system using hot waste water(waste heat) of the thermal power plant discharged from a thermal power plant to the sea were analyzed. The greenhouse area was $5,280m^2$ and scale of the heat pump system was 120 RT(Refrigeration Ton), which was divided into 30 RT, 40 RT and 50 RT. The heat pump system consisted of the roll type heat exchangers, hot waste water transfer pipes, heat pumps(30, 40, 50 RT), a heat storage tank and fan coil units. The roll type heat exchangers was made of PE(Poly Ethylene) pipes in consideration of low cost and durability against corrosion, because hot waste water(sea water) is highly corrosive. And the heating period was 5 months from October to February. During the heating performance test(12 hours), the inlet water temperature of evaporator was changed from $32^{\circ}C$ to $26^{\circ}C$, and heat absorption of he evaporator was changed from 175 kW to 120 kW. The inlet water temperature of the condenser rose linearly from $15^{\circ}C$ to $50^{\circ}C$, and the heat release of condenser was reduced by 40 kW from 200 kW to 160 kW. And the power consumption of the heat pump system increased from 30 kW to 42 kW. When the inlet water temperature of condenser was $15^{\circ}C$, the heating COP(Coefficient Of Performance) was over 7.0. When it was $30^{\circ}C$, it dropped to 5.0, and when it was above $40^{\circ}C$, it decreased to less than 4.0. It was analyzed that the reduction of heating energy cost was 87% when compared to the duty free diesel that the carbon dioxide emission reduction effect was 62% by recycling the waste heat of the thermal power plant as a heat source of the heat pump system.

A Study on the Emission Characteristics of Water Pollutants in Wastewater Discharge Facilities and Drainpipes of Yeongsangang (영산강수계 주요 산업단지 폐수배출시설과 배수로에 대한 수질오염물질 배출특성 연구)

  • Lee, Jae-Young;Min, Hwa-In;Choi, Kyung-Chug;Ju, Hyun-Jin;Kim, Gyeong-Soo;Yun, Seol-Hee;Lee, Jae-Choon
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.586-599
    • /
    • 2018
  • To learn about the discharge facility management of industrial complexes and the discharge characteristics of water pollutants in drainage, 11 sites were selected, including 16 discharge companies of Hanam Industrial Complex and High-Tech Scientific Industrial Complex and 4 drainages of the industrial complexes. Through the analysis, it was found that 12(75 %) of the 16 discharge companies had specific hazardous substances other than those registered at the time of installation and registration of the wastewater discharge facilities. In terms of other pollutants, 11 of the 16 companies(about 69 %) were found to have pollution items that differed from those included in approved and reported items lists. In addition, Formaldehyde, Mn, Zn, and Ba were discharged from 11 out of the 16 companies. Significantly, one of the specific hazardous water pollutants, Cu, was detected in all discharge facilities at levels from 0.029 to 0.929 mg/L. Even in major complexes drainages and the main stream of the Yeongsangang. As, Dichloromethane, and Chloroform were detected. However, it cannot be conclusively claimed that it is probable that these substances were actually discharged from the above facilities because research was only done in a limited range(Class 1 to Class 3), and therefore, further research is required. In the future, it will be necessary to expand the research scope of the discharge companies in order to establish a database of water pollutants, and to improve permits and reported items based on discharged substances.

Development of Spent Nuclear Fuel Transportation Worker Exposure Scenario by Dry Storage Methods (건식 저장방식별 사용후핵연료 운반 작업자 피폭시나리오 개발)

  • Geon Woo Son;Hyeok Jae Kim;Shin Dong Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Currently, there are no interim storage facilities and permanent disposal facilities in Korea, so all spent nuclear fuels are temporarily stored. However, the temporary storage facility is approaching saturation, and as a measure to this, the 2nd Basic Plan for the Management of High-Level Radioactive Waste presented an operation plan for dry interim storage facilities and dry temporary storage facilities on the NPP on-site. The dry storage can be operated in various ways, and to select the optimal dry storage method, the reduction of exposure for workers must be considered. Accordingly, it is necessary to develop a worker exposure scenario according to the dry storage method and evaluate and compare the radiological impact for each method. The purpose of this study is to develop an exposure scenario for workers transporting spent nuclear fuel by dry storage method. To this end, first, the operation procedure of the foreign commercial spent nuclear fuel dry storage system was analyzed based on the Final Safety Analysis Report (FSAR). 1) the concrete overpack-based system, 2) the metal overpack-based system, and 3) the vertical storage module-based system were selected for analysis. Factors were assumed that could affect the type of work (working distance, working hours, number of workers, etc.) during transportation work. Finally, the work type of the processes involved in transporting spent nuclear fuel by dry storage method was set, and an exposure scenario was developed accordingly. The concrete overpack method, the metal overpack method, and the vertical storage module method were classified into a total of 31, 9, and 23 processes, respectively. The work distance, work time, and number of workers for each process were set. The product of working hours and number of workers (Man-hour) was set high in the order of concrete overpack method, vertical storage module method, and metal overpack method, and short-range work (10 cm) was most often applied to the concrete overpack method. The results of this study are expected to be used as basic data for performing radiological comparisons of transport workers by dry storage method of spent nuclear fuel.

Studies on Swine Slurry Composting Facilities with Curtailment of Bulking Agents (돈분뇨 슬러리 퇴비화시 부재료 절감형 시설 연구)

  • 김태일;한정대;정광화;박치호;권두중;남은숙;김형호;이덕수
    • Journal of Animal Environmental Science
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 1998
  • This study was carried out to estimate the economic impacts on operation cost and curtail the bulking agent between two kinds of plants in swine farms. Bulking agents and Plants have a variety of roles in the fields of the composting for livestock manure and also represent an economic problem in terms of plant operation costs and compost production. Two farms which have rotary(size of reactor : 10${\times}$35${\times}$1.5m) or bucket(size of reactor : 10${\times}$68${\times}$2m) plants were used for 24 weeks for bucket conveyor system, which are composed of refilling rice hull as a bulking agent every 3 weeks till decreasing volume, for 4 weeks for rotary conveyor system, which has continuous compost production system without refilling rice hull, respectively. Composts was produced in 24 weeks in the bucket conveyor system, in 4 weeks in the rotary conveyor system, respectively. The results are as follows : 1. The tissue change of Rice hull at the composts of 45 days pursuant to composting steps was more crumbling in bucket conveyor system than in rotary conveyor system. 2. Microbial counts of the final composts for safety and quality showed that total bacteria counts was 1.01${\times}$108 cfu/g in bucket conveyor system, 2.82${\times}$108 cfu/g in rotary conveyor system, Salmonella was 0.3${\times}$102 cfu/g in bucket conveyor system, 7.6${\times}$102 cfu/g in rotary conveyor system, colifom bacteria was 0.5${\times}$106 cfu/g in bucket conveyor system, 1.5${\times}$106cfu/g in rotary conveyor system, fungi 1.24${\times}$106 cfu/g in bucket conveyor system, 0.01${\times}$106 cfu/g in rotary conveyor system, respectively. However, Any system used in this trial could not be met the regulation of A grade compost of EPA and USA. 3. C:N ratio according to the composting was more rapidly changed in bucket conveyor system with 64.5 of 5 days compost to 25.4 of final products than in rotary conveyor system with 26.7 of 5 days compost to 25.9 of final products. 4. Based on the mechanical characteristics of plants used in trial and compared with Rotary conveyor system, the Bucket conveyor system in which has 0.72 ㎥/㎥ of bulking agent capacity per slurry could be curtailed 1.78 ㎥of rice hull for disposal of waste, 1㎥. It was proper facilities to produce composts quantitative in Rotary conveyor system, and to treat waste quantitative and obtain good results in compost quality in Bucket conveyor system.

Application of Cyclone to Removal of Hot Particulate in Hot Cell (Hot Cell 내의 고방사능 분진 제거를 위한 사이클론 적용 실험)

  • Kim Gye Nam;Lee Sung Yeol;Won Hui Jun;Jung Chong Hun;Oh Won Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.67-75
    • /
    • 2005
  • The size and main ingredient of hot particulate generated during the nuclide experiment in hot cells of nuclear facilities were 0.5300 $\mu$m and UO$\_2$. A cyclone filter equipment which consists of a cyclone and Bag/HEPA filter was devised to remove hot particulate generated during the nuclide experiment in hot cells of nuclear facilities. The experimental conditions to maximize the collection efficiency of hot particulate were suggested through experiments done with the cyclone filter equipment. With the large size of simulated particulate, the collection efficiency of the particulate was high. When the size of simulated particulate was more than 5 $\mu$m, the collection efficiency of the particulate was more than $80\%$ and when the size of simulated particulate was less than 1.0 urn, the collection efficiency decreased by less than $70\%$. If the inflow velocity of simulated particulate was increased, the collection efficiency of the particulate was also increased. When the inflow velocity of simulated particulate was more than 12m/sec, the collection efficiency was higher than $70\%$, but after 17 m/sec inflow velocity, no change observed. The collection efficiency of the simulated particulate can be enhanced with the length of vortex finder inside the chamber. With the length of vortex finder, 7.2cm, the observed collection efficiency of the particulate was the maximum. Moreover, when the sub-cone was attached under the cyclone, the collection efficiency of cyclone increased $2\%$. It was found that effect by attachment of sub-cone was not serious.

  • PDF

An Assessment of Air Sampling Location for Stack Monitoring in Nuclear Facility (원자력시설 굴뚝 내 공기시료채취 위치의 적절성 평가)

  • Lee, JungBok;Kim, TaeHyoung;Lee, JongIl;Kim, BongHwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.173-180
    • /
    • 2017
  • In this study, air sampling locations in the stack of the Advanced Fuel Science Building (AFSB) at the Korea Atomic Energy Research Institute (KAERI) were assessed according to the ANSI/HPS N13.1-1999 specification. The velocity profile, flow angle and $10{\mu}m$ aerosol particle profile at the cross-section as functions of stack height L and stack diameter D (L/D) were assessed according to the sampling location criteria using COMSOL. The criteria for the velocity profile were found to be met at 5 L/D or more for the height, and the criteria for the average flow angle were met at all locations through this assessment. The criteria for the particle profile were met at 5 L/D and 9 L/D. However, the particle profile at the cross-section of each sampling location was found to be non-uniform. In order to establish uniformity of the particle profile, a static mixer and a perimeter ring were modeled, after which the degrees of effectiveness of these components were compared. Modeling using the static mixer indicated that the sampling locations that met the criteria for the particle profile were 5-10 L/D. When modeling using the perimeter ring, the sampling locations that met the criteria for particle profile were 5 L/D and 7-10 L/D. The criteria for the velocity profile and the average flow angle were also met at the sampling locations that met the criteria for the particle profile. The methodologies used in this study can also be applied during assessments of air sampling locations when monitoring stacks at new nuclear facilities as well as existing nuclear facilities.

Neutron Shielding Performance of Mortar Containing Synthetic High Polymers and Boron Carbide (합성 고분자 화합물 및 탄화붕소 혼입에 따른 모르타르의 중성자 차폐성능 분석)

  • Min, Ji-Young;Lee, Bin-Na;Lee, Jong-Suk;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • Concrete walls of neutron generating facilities such as fusion reactors and fission reactors become radioactive by neutron irradiation. Both low-activation and neutron shielding are a critical concern at the dismantling stage after the shutdown of facilities with a requirement of radioactive waste management. To tackle this, two types of additives were investigated in fabricating mortar specimens: synthetic high polymers and boron carbide. It is well known that a hydrogen atom is effective in neutron shielding by an elastic scattering because its mass is almost the same as that of the neutron. And boron is an effective neutron absorber with a big neutron absorption cross section. In this study, the effect of the type, shape, and size of polymers were investigated as well as that of boron carbide. Total 16 mix designs were prepared to reveal the effect of polymers on mechanical properties and neutron shielding performance. The neutron does equivalent of polymers-based mortar for fast neutrons decreased by 36 %, and the count rate of boron carbide-based mortar with regard to thermal neutrons decreased by 90 % compared to conventional mortar. These results showed that a combination of polymers and boron carbide compounds has potential to reduce the thickness of neutron shields as well as radioactive waste from reactors.

Rock Cavern Storage of Spent Fuel (사용후핵연료 동굴저장)

  • Cho, Won-Jin;Kwon, Sangki;Kim, Kyung-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.301-313
    • /
    • 2015
  • The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

Analysis of the Pathways and Travel Times for Groundwater in Volcanic Rock Using 3D Fracture Network (화산암질 암반에서 3차원 균열망 모델을 이용한 지하수 유동경로 및 유동시간 해석)

  • 박병윤;김경수;김천수;배대석;이희근
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.42-58
    • /
    • 2001
  • In order to protect the environment from waste disposal activities, the prediction of the flux and flow paths of the contaminants from underground facilities should be assessed as accurately as possible. Especially, the prediction of the pathways and travel times of the nuclides from high level radioactive wastes in a deep repository to biosphere is one of the primary tasks for assessing the ultimate safety and performance of the repository. Since the contaminants are mainly transported with groundwater along the discontinuities developed within rock mass, the characteristics of groundwater flow through discontinuities is important for the prediction of contaminant fates as well as safety assessment of a repository. In this study, the actual fracture network could be effectively generated based on in situ data by separating geometric parameter and hydraulic parameter. The calculated anisotropic hydraulic conductivity was applied to a 3D porous medium model to calculate the path flow and travel time of the large studied area with the consideration of the complex topology in the area. Using the model, the pathways and travel times for groundwater were analyzed. From this study, it was concluded that the suggested techniques and procedures for predicting the pathways and travel times of groundwater from underground facilities to biosphere is acceptable and those can be applied to the safety assessment of a repository for radioactive wastes.

  • PDF