• Title/Summary/Keyword: Waste Facilities

Search Result 763, Processing Time 0.027 seconds

Analysis of Greenhouse Gas Reduction according to Different Scenarios of Zero Food Waste Residential Buildings (음식물류폐기물 제로화 주거단지 구축 시나리오별 비용 및 환경효과 분석)

  • Oh, Jeong-Ik;Yoon, Eun-Joo;Park, Ire;Kim, Yeong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.353-363
    • /
    • 2016
  • In this study, traditional treatment scenario of food wastes that collected and transported food waste is recycled in large treatment facilities and suggested treatment scenario of onsite zero discharge system that food waste is treated in housing complex were supposed. The scenarios were compared and analyzed by capital expenditure, oil consumption, $CO_2$ emission quantity, operating expenditure and management expenses. The capital expenditure, oil consumption and $CO_2$ emission quantity of small scale dispersion dealing method is the lowest compared to traditional treatment method. As a results, it is possible to obtain the effect that operating expenditure was reduced by 91% and management expenses was reduced by 40% with suggested treatment method. The treatment method that have low capital expenditure is tend to lower oil consumption and $CO_2$ emission quantity. The small scale dispersion dealing method have the lowest capital expenditure, oil consumption and $CO_2$ emission quantity and the linked method with sewage treatment have the highest expenditure and $CO_2$ emission quantity. Eventually, the optimal model of onsite zero discharge system in housing complex is small scale dispersion dealing method.

The Study of Preparation of Block Using Wastewater Sludge of Petrochemical Factory (석유화학공장 폐수슬러지를 이용한 벽돌제조 연구)

  • Hu, Kwan;Lu, Juk-Yong;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.66-73
    • /
    • 2003
  • To investigate the availability of solidified wastes as resource, wastewater sludge, waste gypsum and fly ash were mixed and the results with various mixing ratios are as follows. Compressive strength turned out to be increasing as the amount of waste gypsum increases, keeps longer curing inhibition, and higher forming Pressure under the conditions of waste gypsum/sludge ratio 0.31-0.45, and 0.9kg cement as 15% and 1.2kg cement as 20% of total amount. Solidified agent under the fly ash/sludge ratio 0.45, 0.6, compressive strength seemed to be higher than standard one which means solidified wastes with these conditions could be applicable in real life. These results inform that concentrations of the leachate $Cr^{+6}$, Cu, Zn, Cd, Pb solidified matrix, containing low concentration of heavy metal, were cured with/without enough time it still will cause adverse effect on nature environment and application of heavy metal sequester must be needed to reuse industrial wastes from incineration plant solidified matrix. Total cost price, when considering manufacturing capability of the facilities for resourcerizing as 18,000ton was presented 678,664,000 won, as it were, manufacturing cost price was 37,704 won per ton. The results as above has shown that it's possible to use the mixture of waste gypsum/sludge, fly ash/sludge, cement, additions, and solidification matter as substitute of materials like brick, block, interlocking which has proper compressive strength of KS L 5201 and KS F 4004.

  • PDF

Status of Nuclear Power Plant Decommissioning Cost Analysis in USA (미국의 원전해체 비용평가 기초자료 및 동향 분석)

  • Shin, Sanghwa;Kim, Soonyoung
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.139-148
    • /
    • 2018
  • Assessment of NPP(Nuclear Power Plant) decommissioning cost is very important for safe decommissioning of nuclear power plants. In the United States, which has the most NPP decommissioning experience, the cost evaluation study has been conducted since the 1970s in order to decommissioning nuclear facilities. The US NRC has conducted studies on decommissioning technology, safety and cost for a variety of reactor type and nuclear installations. In the total decommissioning costs, the end of operation licenses accounted for the largest portion, followed by spent fuel management and site restoration. In case of immediate decommissioning, spent fuel management cost increased compared to delayed decommissioning, and delayed deocmmissioning increased the cost of terminating the operation license. However, in general, delayed decommissioning does not show any significant benefit as compared with immediate decommissioning. It is necessary to consider the evaluation according to the site conditions when evaluating the cost of decommissioning domestic nuclear power plants. Also, in Korea, IAEA recommendations were applied to reorganize the radioactive waste classification system. Therefore, it is necessary to develop a method to appropriately use the decommissioning data of the preceding US Nuclear Power Plant in the new classification system when estimating the amount of radioactive waste generated during decommissioning. In particular, the establishment of the evaluation methodology for the waste to be disposed of will be an important factor in securing the accuracy of the decommissioning cost. In addition, it is necessary to construct information data that can be applied to facility characteristics and work characteristics in order to evaluate the cost of demolition of domestic nuclear power plants.

Enhancement of the Life of Refractories through the Operational Experience of Plasma Torch Melter (플라즈마토치 용융로 운전경험을 통한 내화물 수명 증진 방안)

  • Moon, Young Pyo;Choi, Jang Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2016
  • The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

Probability-based Cost Analysis for Recycling Secondary Products from Construction Waste (건설폐기물 재활용 2차 제품에 대한 확률모델 기반 비용분석)

  • Kwon, Kihyon;Kim, Do-Gyeum;Lee, Ho-Jae;Seo, Eun-Ah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.227-234
    • /
    • 2020
  • Under consideration of construction waste recycling, candidate secondary products applicable for the civil and construction areas can be reliably employed based on the recycling cost analysis. For the validation purpose, probability-based cost analyses were performed to estimate recycling cost profit considering uncertainties. When recycling construction wastes, the costs at each stage are fully dependent on target products to be adopted. To achieve commercialization of each product, its quality has to be improved with economic efficiency through accurate evaluation of input costs. Based on the probabilistic recycling cost analysis, the cost benefit for target products was estimated with waste classification cost, transportation cost to recycling treatment facilities and production cost. All necessary information on the cost analysis were collected from literature, disclosure, and existing recycling companies. In addition, a cost difference between recycled and non-recycled events was made. As a result, a probability-based recycling cost estimate for candidate secondary products was herein presented.

Current Status and Characterization of CANDU Spent Fuel for Geological Disposal System Design (심지층 처분시스템 설계를 위한 중수로 사용후핵연료 현황 및 선원항 분석)

  • Cho, Dong-Keun;Lee, Seung-Woo;Cha, Jeong-Hun;Choi, Jong-Won;Lee, Yang;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Inventories to be disposed of, reference turnup, and source terms for CANDU spent fuel were evaluated for geological disposal system design. The historical and projected inventory by 2040 is expected to be 14,600 MtU under the condition of 30-year lifetime for unit 1 and 40-year lifetime for other units in Wolsong site. As a result of statistical analysis for discharge burnup of the spent fuels generated by 2007, average and stand deviation revealed 6,987 MWD/MtU and 1,167, respectively. From this result, the reference burnup was determined as 8,100 MWD/MtU which covers 84% of spent fuels in total. Source terms such as nuclide concentration for a long-term safety analysis, decay heat, thermo-mechanical analysis, and radiation intenity and spectrum was characterized by using ORIGEN-ARP containing conservativeness in the aspect of decay heat up to several thousand years. The results from this study will be useful for the design of storage and disposal facilities.

  • PDF

A Case Analysis on the Spalling Evaluation of the Deep Rock Mass and Pillar Spalling Modeling (고심도 암반의 스폴링 평가에 대한 사례 분석 및 광주 스폴링 모델링)

  • Park, Seunghun;Kwon, Sangki;Lee, Changsoo;Lee, Jaewon;Yoon, Seok;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.109-135
    • /
    • 2020
  • Globally, the deepening depth in the underground is a situation of the high interest for a purpose of the development of various facilities. The development of deep underground space should be based on the structural stability of rocks. Spalling is known to have an impact on the structural stability degradation in deep underground space. As an attempt to predict spalling, many researchers have proposed predicted conditions in accordance with stress states which occur around the tunnel, rock conditions, and types of rock. In addition, the analysis on spalling method has been verified by using computer modeling such as FLAC, EXAMINE, Insight 2D, UDEC and FRACOD, along with in-situ measurement results. In Canada URL (Underground Research Tunnel), CWFS model (Cohesion Weakening Frictional Strengthening) was used to precisely predict for the state of spalling, comparing spalling modeling. CWFS model has been identified as a reliable method for predicting such phenomena. This study aims to analyze several cases of spalling, and then make a comparison between the conditions for spalling occurrence and the predicted results of model CWFS. With this, it investigates the applicability of prediction of spalling, targeting pillar under deep depth condition.

Effects of Tourist and Accommodation on the Municipal Solid Waste Generation in the Small Island (소규모 도서지역에서 관광객 및 숙박시설이 생활폐기물 발생량에 미치는 영향)

  • Lim, Ji-Young;Park, Sang-Hyun;Song, Seung-Jun;Cho, Young-Gun;Kim, Jin-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • This study analyzed the correlation between generation of municipal solid waste (MSW), number of tourists, and area of accommodation facilities of small island such as Shin, Si, Mo and Jangbong island in Ongjin county, Incheon for use as basic data for estimation of MSW generation. An analysis of statistics data from september in 2012 to august in 2018 showed MSW generation was steadily increasing, and MSW generation in 2018 was increased by about 3.98 times compared to 2012. In summer, which is the tourist season, MSW generation was 2.43~9.39 times higher than in winter. MSW generation was influenced by the number of tourists. As of August 2018, generation rate of per capita of MSW was $0.839kg/cap{\cdot}day$, which was about 3.71 times higher than August 2013. Area of accommodation increased continuously from 2008 to 2017, increasing by about 8.32 times. The coefficient of determination between the area of accommodation and the number of tourists was 0.8418. Also coefficient of determination between area of accommodation and MSW generation were 0.9370 and 0.6025 before and after August in 2015, respectively. Accommodation was lacked due to increase of tourists. Although accommodation was scarce because of increase in the number of tourists since 2015, the coefficient of determination decreased due to the increase in waste generation.

Geoscientific Research of Bedrock for HLW Geological Disposal using Deep Borehole (고준위방사성폐기물 심층처분을 위한 심부 시추공을 활용한 암반의 지구과학적 조사 )

  • Dae-Sung, Cheon;Won-Kyong, Song;You Hong, Kihm;Seungbeom, Choi;Seong Kon, Lee;Sung Pil, Hyun;Heejun, Suk
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.435-450
    • /
    • 2022
  • In step-by-step site selection for geological disposal of high-level radioactive waste, parameters necessary for site selection will be acquired through deep drilling surveys from the basic survey stage. Unlike site investigations of rock mass structures such as tunnels and underground oil storage facilities, those related to the geological disposal of high-level radioactive waste are not only conducted in relatively deep depths, but also require a high level of quality control. In this report, based on the 750 m depth drilling experience conducted to acquire the parameters necessary for deep geological disposal, the methodology for deep drilling and the geology, geophysics, geochemistry, hydrogeology and rock mechanics obtained before, during, and after deep drilling are discussed. The procedures for multidisciplinary geoscientific investigations were briefly described. Regarding in-situ stress, one of the key evaluation parameter in the field of rock engineering, foreign and domestic cases related to the geological disposal of high-level radioactive waste were presented, and variations with depth were presented, and matters to be considered or agonized in acquiring evaluation parameters were mentioned.

Derivation of Engineered Barrier System (EBS) Degradation Mechanism and Its Importance in the Early Phase of the Deep Geological Repository for High-Level Radioactive Waste (HLW) through Analysis on the Long-Term Evolution Characteristics in the Finnish Case (핀란드 고준위방폐물 심층처분장 장기진화 특성 분석을 통한 폐쇄 초기단계 공학적방벽 성능저하 메커니즘 및 중요도 도출)

  • Sukhoon Kim;Jeong-Hwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.725-736
    • /
    • 2023
  • The compliance of deep geological disposal facilities for high-level radioactive waste with safety objectives requires consideration of uncertainties owing to temporal changes in the disposal system. A comprehensive review and analysis of the characteristics of this evolution should be undertaken to identify the effects on multiple barriers and the biosphere. We analyzed the evolution of the buffer, backfill, plug, and closure regions during the early phase of the post-closure period as part of a long-term performance assessment for an operating license application for a deep geological repository in Finland. Degradation mechanisms generally expected in engineered barriers were considered, and long-term evolution features were examined for use in performance assessments. The importance of evolution features was classified into six categories based on the design of the Finnish case. Results are expected to be useful as a technical basis for performance and safety assessment in developing the Korean deep geological disposal system for high-level radioactive waste. However, for a more detailed review and evaluation of each feature, it is necessary to obtain data for the final disposal site and facility-specific design, and to assess its impact in advance.