• Title/Summary/Keyword: Waste Facilities

Search Result 763, Processing Time 0.032 seconds

AHP application method for construction of decision making system by using GIS (GIS에 의한 의사결정 시스템 구축에서 AHP의 적용기법)

  • Yang, In-Tae;Park, Jae-Hoon;Choi, Kwang-Sik
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.27-34
    • /
    • 1998
  • According to growing interest in environmental quality with improvements of a standard of living site selection problems such as waste landfill sites, caused regional conflicts. This study investigates a waste landfill estimation method that was used to for storage, management, analysis and display of environmental information provided by geo-spatial information system(GIS) and analytic hierarchy process(AHP) as a decision-making method. If GIS is integrated with AHP, site selection problems of environmental hatred facilities shall be able to be very useful, because of AHP with flexibility which appropriately reflects opinions of the related group.

  • PDF

Development of Advanced Management System for Social Infrastructures - Advanced Management System of Waste Disposal Facilities as an Example -

  • Muraoka, Motoshi;Kirikawa, Takuya;Nagata, Katsuya
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.11-15
    • /
    • 2010
  • Infrastructures in Japan constructed mostly in high economic growth period become elder & elder, and the troubles & accidents caused by the aging increase. Though investment for the renewal is necessary, the shortage of public fund delays the action. Besides, we expect the decrease of the population that means the decrease of the engineers who take care of social infrastructures. Thus, it is necessary for us to develop Advanced Management system of social Infrastructures (AMI) to realize the efficient and economical operation. Our concept of AMI consists of using ICT, PI (Public Involvement) and establishment of O&M diagnosis system. We expect AMI will support to realize the appropriate repairing, preventive maintenance based on the actual performance, accidents & dangerous experience and education & training of the workers. In this paper, development of AMI for the waste disposal facility as a first example of infrastructures will be shown.

A Study on Annual Atmospheric Dispersion Factors Between Continuous and Purge Releases of Gaseous Radioactive Effluents

  • Kim, Na-Hyun;Hwang, Won-Tae;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • Radioactive materials from nuclear power facilities can be released into the atmosphere through various channels. Recently, the dispersion of radioactive materials has become critical issue in Korea after Kori Unit 1 and Wolsong Unit 1 were permanently shut down. In this study, annual atmospheric dispersion factors were compared based on the continuous release and purge release using the XOQDOQ computer program, a method for calculating atmospheric dispersion factors at commercial nuclear power stations. The meteorological data analyzed in this study was based on the Shin Kori nuclear power meteorological tower which has the largest operating nuclear power plants in Korea, for three years (from 2008 to 2010). The analysis results of the dispersion factor of the radioactive material release obtained using the XOQDOQ program showed that the difference between the continuous release and purge release was within two times. This study will be valuable helpful for revealing the uncertainty of the predictive atmospheric dispersion factor to achieve regulation.

A Study on Fire and Evacuation in the Public Relations Room of Waste Treatment Facilities (폐기물 처리시설 홍보실내 화재 및 피난에 관한 연구)

  • Lee, Jae-Young;Jeon, Yong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • The public relations room of the waste disposal facility is a space that can be visited by a large number of unevaluated personnel. Therefore, it is essential to design against fire, and research on fire and evacuation is essential. In this study, in order to evaluate the safety of the occupants in the event of fire and evacuation based on the life safety standards of occupants, the increase in risk due to heat, visible distance, and toxic gases on a plane 1.8m from the floor, which is the limit of breathing of the evacuee, over time. It was analyzed by location. As a result, the RSET of the P-01 exit was 93.0 seconds and the ASET was 272.6 seconds, the RSET of the P-02 exit was 45.8 seconds, the ASET was 147.7 seconds, the RSET of the P-03 exit was 106 seconds, and the ASET was 182.9 seconds.

The Transport of Radionuclides Released From Nuclear Facilities and Nuclear Wastes in the Marine Environment at Oceanic Scales

  • Perianez, Raul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.321-338
    • /
    • 2022
  • The transport of radionuclides at oceanic scales can be assessed using a Lagrangian model. In this review an application of such a model to the Atlantic, Indian and Pacific oceans is described. The transport model, which is fed with water currents provided by global ocean circulation models, includes advection by three-dimensional currents, turbulent mixing, radioactive decay and adsorption/release of radionuclides between water and bed sediments. Adsorption/release processes are described by means of a dynamic model based upon kinetic transfer coefficients. A stochastic method is used to solve turbulent mixing, decay and water/sediment interactions. The main results of these oceanic radionuclide transport studies are summarized in this paper. Particularly, the potential leakage of 137Cs from dumped nuclear wastes in the north Atlantic region was studied. Furthermore, hypothetical accidents, similar in magnitude to the Fukushima accident, were simulated for nuclear power plants located around the Indian Ocean coastlines. Finally, the transport of radionuclides resulting from the release of stored water, which was used to cool reactors after the Fukushima accident, was analyzed in the Pacific Ocean.

A Study on the Method of Cost Estimation for the Decommissioning Plan by the Analysis of Domestic Cyclotron Dismantling Practices (국내 사이클로트론 해체 사례 분석을 통한 해체 계획 비용 산정 방법 연구)

  • Woo, Rina;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.3
    • /
    • pp.97-103
    • /
    • 2014
  • Decommission of medical cyclotron give rise to a lot of low-level radioactive waste and costs. Decommissioning cost should be reasonably calculated according to the decommissioning activities and installed components of facilities. In this paper, we investigated the experience on the cyclotron relocation from SNUH(Seoul National University Hospital) to SKKU(Sungkyunkwan University) and analyzed radioactive waste management costs by applying the disposal scenarios. Also considerations for decommissioning cost estimation are reviewed. The results could be utilized as a basic data for establishment on the methodology of decommissioning cost estimation and evaluation.

ICT Fusion Type Plasma Waste Heat Ventilation System for Improvement of Indoor Air Quality (실내 공기질 개선을 위한 ICT 융복합형 플라즈마 폐열 환기 시스템)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1215-1220
    • /
    • 2019
  • Currently, each farm bears both the outbreak of foot-and-mouth disease and the damage caused by AI. In addition, complaints about odors in the livestock industry are constantly being recovered and are expected to occur in the future. The purpose of this study is to improve the indoor air quality of enclosed facilities such as barns, houses, pigsty, and etc. This paper develops low-temperature plasma waste heat ventilation system to be installed in ventilation unit location and standardizes heat exchange element, low-temperature plasma lamp, and ballast for enhanced air cleaning function. In addition, this study intends to develop a new control system so that the farmers can connect with existing weather systems, flow fans, and other facility equipment by incorporating ICT.

Solid Reduction and Methane Production of Food Waste Leachate using Thermal Solubilization (열가용화를 이용한 음식물탈리여액의 고형물 감량화 및 메탄 생산에 관한 연구)

  • Choi, Jung Su;Kim, Hyun Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.559-567
    • /
    • 2014
  • Since the ocean dumping of organic wastes is prohibited under the London Convention, the need for land treatment of food waste leachate (FWL) has significantly been growing in recent years. This study was conducted to use thermal solubilization to turn FWL into a form that can easily be degraded during the anaerobic digestion process, thereby reducing the percentage of solids and increasing the production of methane. To derive the optimal operating conditions of thermal solubilization, a laboratory-scale reactor was built and operated. The optimal reaction temperature and time turned out to be $190^{\circ}C$ and 90 min, respectively. The BMP test showed a methane production of 465 mL $CH_4/g$ $COD_{Cr}$ and a biodegradation rate of 90.1%. The production of methane rose by about 15%, compared with no the application of thermal solubilization. To reduce the solid content of FWL and improve the methane production, therefore, it may be helpful to apply thermal solubilization to pre-treatment facilities for anaerobic digestion.

Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container

  • Othman, H.;Sabrah, T.;Marzouk, H.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.588-599
    • /
    • 2019
  • This research presents a structural design of high-level waste (HLW) container using ultra-high performance fiber reinforced concrete (UHP-FRC) material. The proposed design aims to overcome the drawbacks of the existing concrete containers which are heavy, difficult to fabricate, and expensive. In this study, the dry storage container (DSC) that commonly used at Canadian Nuclear facilities is selected to present the proposed design. The design has been performed such that the new UHP-FRC alternative has a structural stiffness equivalent to the existing steel-concrete-steel container under various loading scenarios. Size optimization technique is used with the aim of maximizing stiffness, and minimizing the cost while satisfying both the design stresses and construction requirements. Then, the integrity of the new design has been evaluated against accidental drop-impact events based on realistic drop scenarios. The optimization results showed: the stiffness of the UHP-FRC container (300 mm wall thick) is being in the range of 1.35-1.75 times the stiffness of existing DSC (550 mm wall thick). The use of UHP-FRC leads to decrease the container weight by more than 60%. The UHP-FRC container showed a significant enhancement in performance in comparison to the existing DSC design under considered accidental drop impact scenarios.

Preparation and Consideration of Sample Collection in Undeclared Areas for Denuclearization Verification

  • Kim, Dong Yeong;Kim, Giyoon;Lee, Jun;Lim, Kyung Taek;Chung, Heejun;Seo, Jihye;Kim, Myungsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.479-489
    • /
    • 2021
  • The Republic of Korea is expected to participate in the denuclearization verification activities by the International Atomic Energy Agency (IAEA) in case any neighboring countries declared denuclearization. In this study, samples for the verification of nuclear activities in undeclared areas were selected for the denuclearization of neighboring countries, and the appropriateness of the procedures was considered. If a country with nuclear weapons declares denuclearization, it must be accompanied by the IAEA's verification regarding nuclear materials and weapons in the declared and undeclared areas. The analysis of the process samples or on-site environmental samples and the verification of undeclared nuclear facilities and materials aid in uncovering any evidence of concealment of nuclear activity in undeclared areas. Therefore, a methodology was established for effective sampling and analysis in accordance with proper procedures. Preparations for sampling in undeclared areas were undertaken for various potential scenarios, such as, the establishment of zones according to radiation dose, methods of supplying electricity, wireless communication networks, targets of sampling according to characteristics of nuclides, manned sampling method, and unmanned sampling method. Through this, procedures were established for pre- and post-site settings in preparation for hazards and limiting factors at nuclear inspection sites.