• Title/Summary/Keyword: Waste Cooking Oil

Search Result 39, Processing Time 0.034 seconds

Environmental Impact Evaluation of the Waste Cooking Oil Recycling Products (폐식용유 재활용 제품의 환경성 평가)

  • Kim, Tae-Suk;Kim, Dong-Gyue;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.516-525
    • /
    • 2015
  • In this study, Life Cycle Assessment(LCA) was applied to the production processes of waste cooking oil recycling products. Recycling products as defined in the Law of Saving of Resources and Recycling Promotion are biodiesel and soap. Weighting result of biodiesel production process showed that the most significant impact potential was abiotic resource depletion(84.17%) followed by global warming(13.93%). In the case of the soap, the most significant impact potential was also abiotic resource depletion(58.59%) followed by global warming(33.71%). In terms of the whole system of the biodiesel production process, methanol showed the largest environmental impact potential(87.35%). While in the case of the soap, sodium chloride showed the largest environmental impact potential(99.99%). This study suggests that there should be improvement of the methanol recovery system in the biodiesel production process and also appropriate use of the major environmental impact materials in both processes.

Spray and Flame Characteristics of Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Diesel Engine Using In-cylinder Visualization (가시화 엔진을 이용한 직접 분사식 압축착화 디젤엔진에서 폐식용유 바이오디젤과 디젤의 분무 및 화염 특성 비교)

  • Hwang, Joonsik;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.105-113
    • /
    • 2014
  • Spray and combustion process with waste cooking oil (WCO) biodiesel and commercial diesel were analyzed in an optically-accessible single-cylinder compression ignition diesel engine equipped with a high pressure common-rail injection system. Direct imaging method was applied to investigate spray and combustion characteristics. From the mie-scattering results, it was verified that WCO biodiesel had a longer injection delay compared to diesel. Spray tip penetration length of WCO biodiesel was longer and spray angle was narrower than those of diesel due to poor atomization characteristics. In terms of combustion, WCO biodiesel showed later start of combustion, while flame was vanished more rapidly. Analysis of flame luminosity showed that WCO biodiesel combustion had lower intensity and lasted for shorter duration.

Effect of Waste Cooking Oil on Durability of High Volume Mineral Admixture Concrete (폐유지류가 혼화재 다량 치환 콘크리트의 내구성에 미치는 영향)

  • Han, Min-Cheol;Woo, Dae-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • This paper is to investigate an effect of waste cooking oil(WCO) on the engineering properties and durability of high volume admixture concrete. Fly ash with 30% and blast furnace slag with 60% were incorporated in OPC to fabricate high volume admixture concrete with 0.5 of W/B. Emulsified refining cooking oil(ERCO) was made by mixing WCO and emulsifying agent to improve fluidity. ERCO was replaced by cement from 0.25 to 1.0%. As results, the increase of ERCO resulted in decrease of slump and air contents. For compressive strength, the use of ERCO led to decrease the compressive strength at 28 days, while it had similar strength or much higher strength than plain concrete at 180 days. Resistance to carbonation and chloride penetration was improved with the increase of ERCO contents due to decreased pore distribution by saponification between ERCO and concrete, while freeze-thaw resistance was degraded due to air loss.

Optimization of Waste Cooking Oil-based Biodiesel Production Process Using Central Composite Design Model (중심합성계획모델을 이용한 폐식용유 원료 바이오디젤 제조공정의 최적화)

  • Hong, Seheum;Lee, Won Jae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2017
  • In this study, the optimization process was carried out by using the central composite model of the response surface methodology in waste cooking oil based biodiesel production process. The acid value, reaction time, reaction temperature, methanol/oil molar ratio, and catalyst amount were selected process variables. The response was evaluated by measuring the FAME content (more than 96.5%) and kinematic viscosity (1.9~5.5 cSt). Through basic experiments, the range of optimum operation variables for the central composite model, such as reaction time, reaction temperature and methanol/oil molar ratio, were set as between 45 and 60 min, between 50 and $60^{\circ}C$, and between 8 and 12, respectively. The optimum operation variables, such as biodiesel production reaction time, temperature, and methanol/oil molar ratio deduced from the central composite model were 55.2 min, $57.5^{\circ}C$, and 10, respectively. With those conditions the results deduced from modeling were as followings: the predicted FAME content of the biodiesel and the kinematic viscosity of 97.5% and 2.40 cSt, respectively. We obtained experimental results with deduced operating variables mentioned above as followings: the FAME content and kinematic viscosity of 97.7% and 2.41 cSt, respectively. Error rates for the FAME content and kinematic viscosity were 0.23 and 0.29%, respectively. Therefore, the low error rate could be obtained when the central composite model among surface reaction methods was applied to the optimized production process of waste cooking oil raw material biodiesel.

Environmental Evaluation of Heating Devices Using Low Grade Coal and Waste Cooking Oil - Aspects of Improving Air Quality in Ulaanbaatar, Mongolia - (저급석탄과 폐식용유를 활용한 난방장치의 환경성 평가 - 몽골 울란바타르시 대기질 개선 측면-)

  • Hyung Don Lee;Hyouk Jin Yun;Sung Whan Cho
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Mongolia is experiencing some of the world's most serious air pollution problems. The air pollution is especially severe during the winter when raw coal and low-grade fuels are used to heat homes in Ger villages. The impact of this pollution has created significant health and socioeconomic challenges for the country. In order to mitigate this air pollution, this study analyzed the fuel quality of the low-grade fuels and Mongolian waste cooking oils used in Ulaanbaatar, Mongolia. Then the environmental characteristics of traditional stove combustion and a prototype combustion heating device were compared and analyzed. In addition, the effect of replacing the heating devices was evaluated by analyzing their risks to humans. Analysis of the fuel characteristics showed that briquettes had relatively low environmental properties as a result of their high ash, N and S content. Also, after analyzing the combustion characteristics, it was found that the air quality improvement effect was higher when waste cooking oil was burned compared to the three types of coal that were analyzed. Finally, this study evaluated the impact of replacing the Mongolia traditional stove with a prototype stove that uses waste cooking oil. The results of this study are expected to help to mitigate the air quality problems currently observed in Ulaanbaatar, Mongolia.

Carbonation Mitigation of the High Volume Admixture Concrete according to Application Method of Carbonation Resistance Material (탄산화 억제제 사용 따른 혼화재 다량 치환 콘크리트의 탄산화 억제)

  • Jo, Man-Ki;Choi, Young-Doo;Son, Ho-Jung;Woo, Dae-Hun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.271-273
    • /
    • 2012
  • This paper is to investigate the effect of waste cooking oil(WCO) on carbonation resistance of high volume fly ash and blast furnace slag concrete. WCO and paint were applied for carbonation resistance materials. As expected, the application of WCO to the concrete help it reduce carbonation depth remarkably, regardless of mixture types. This may be due to the fact that WCO makes the capillary pore block by activating saponification. It is found that the degree of carbonation reduce due to WCO is much higher than the case by Paint.

  • PDF

Bond Strength of Plywood Manufactured with Adhesive of pMDI-Ozonized Waste Cooking Oil (오존산화 폐식용유와 pMDI접착제의 합판 접착력)

  • Kang, Chan-Young;Lee, Eung-Su;Seo, Jun-Won;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.498-504
    • /
    • 2011
  • The purpose of this study was to investigate and develop an eco-frendly wood adhesive based on vegetable oil (especially soybean oil), the renewable and sustainable natural resources, using ozonification technology for the chemical structure modification. The waste soybean oil (WSBO) was reacted with $O_3$ at the rate of $450m{\ell}$(acetone) : $50m{\ell}$ (WSBO) for different times, 1, 2, 3 hrs. The investigation of the modified chemical strecture of the ozonied WSBOs were conducted using FT-IR. As ozonification time increased, the peak of the unsaturated double bonds was disappeared especially ozonized-3hrs and aldehyde or carboxyl peak appeared because ozonification broke the oil into small molecules. The plywood were made at $150^{\circ}C$ with 4 minutes hot-press time using the different ozonized 3 hrs WSBO/pMDI adhesives and were tested for the dry, wet, cyclic boil test according to the Korea Industrial Standard F3101 Ordinary plywood. The bond strengths gradually increased until 1 : 0.5~1 : 3, but it decreased 1 : 4, as the contents of pMDI increased. The results of the dry, wet and cyclic bond strengths the equivalent ratio was formed approximately between 1 : 2~1 : 3. And the 1 : 1~1 : 4 strengths met constantly the standard requirement of 7.0kgf/$cm^2$ (KS F3101). From the comprehensive view on the results of above experiment, it could be confirmed that ozonized WSBO/pMDI has characteristics of effective reactivity and wet stability showed as an excellent candidate of wood adhesive applications.

Effect of waste cooking oil addition on ammonia emissions during the composting of dairy cattle manure

  • Kuroda, Kazutaka;Tanaka, Akihiro;Furuhashi, Kenichi;Fukuju, Naoki
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.1100-1108
    • /
    • 2022
  • Objective: The objective of this study was to evaluate the effect of waste cooking oil (WCO) addition on ammonia (NH3) emissions during the composting of dairy cattle manure under two aeration conditions. Methods: The composting tests were conducted using the laboratory-scale composting apparatuses (14 L of inner volume). Three composting treatments (Control, WCO1.5, and WCO3, with WCO added at 0 wt%, 1.5 wt%, and 3 wt% of manure, respectively) were performed in two composting tests: aeration rate during composting was changed from 0.55 to 0.45 L/min in Test 1, and fixed at 0.3 L/min in Test 2, respectively. The NH3 emitted and nitrogen losses during the composting were analyzed, and the effect of the addition of WCO on NH3 emissions were evaluated. Results: Both tests indicated that the composting mixture temperature increased while the weight and water content decreased with increasing WCO content of the composting mixtures. On the other hand, the NH3 emissions and nitrogen loss trends observed during composting in Tests 1 and 2 were different from each other. In Test 1, NH3 emissions and nitrogen losses during composting increased with increasing WCO contents of the composting samples. Conversely, in Test 2, they decreased as the WCO contents of the samples increased. Conclusion: The WCO addition showed different effect on NH3 emissions during composting under two aeration conditions: the increase in WCO addition ratio increased the emissions under the higher aeration rate in Test 1, and it decreased the emissions under the lower aeration rate in Test 2. To obtain reduction of NH3 emissions by adding WCO with the addition ratio ≤3 wt% of the manure, aeration should be considered.

Optimized biodiesel yield in a hydrodynamic cavitation reactor using response surface methodology

  • Neeraj Budhraja;R.S. Mishra
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.233-241
    • /
    • 2022
  • Biodiesel is a non-polluting and non-toxic energy source that can replace conventional diesel. However, the higher production cost and raw material scarcity became challenges that obstruct the commercialization of biodiesel production. In the current investigation, fried cooking oil is used for biodiesel production in a hydrodynamic cavitation reactor, thus enhancing raw material availability and helping better waste oil disposal. However, due to the cavitation effect inside the reactor, the hydrodynamic cavitation reactor can give biodiesel yield above 98%. Thus, the use of orifice plates (having a different number of holes for cavitation) in the reactor shows more than 90% biodiesel yield within 10 mins of a time interval. The effects of rising temperature at different molar ratios are also investigated. The five-hole plate achieves the highest yield for a 4.5:1 molar ratio at 65℃. And the similar result is predicted by the response surface methodology model; however, the optimized yield is obtained at 60℃. The investigation will help understand the effect of hydrodynamic cavitation on biodiesel yield at different molar ratios and elevated temperatures.

Preparation of Waste Cooking Oil-based Biodiesel Using Microwave Energy: Optimization by Box-Behnken Design Model (마이크로웨이브 에너지를 이용한 폐식용유 원료 바이오디젤의 제조: Box-Behnken 설계를 이용한 최적화)

  • Lee, Seung Bum;Jang, Hyun Sik;Yoo, Bong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.746-752
    • /
    • 2018
  • In this study, an optimized process for the waste cooking oil based biodiesel production using microwave energy was designed by using Box-Behnken design model. The process variables were chosen as a mole ratio of the methanol to oil, microwave power, and reaction time. Fatty acid methyl ester (FAME) content was then measured. Through the results of basic experiments, the range of optimum operation variables for the Box-Behnken design model, such as the methanol/oil mole ratio and reaction time, were set as between 8 to 10 and between 4 to 6 min, respectively. Ranges of the microwave power were set as from 8 to 12 W/g for 1.30 mg of KOH/g, acid value, while from 10 to 14 W/g for 2.00 mg of KOH/g, acid value. The optimum methanol/oil mole ratio, microwave power, and reaction time were reduced to 7.58, 10.26 W/g, and 5.1 min, respectively, for 1.30 mg KOH/g of acid value. Also, the optimum methanol/oil mole ratio, microwave power, and reaction time were 7.78, 12.18 W/g, and 5.1 min, respectively, for 2.00 mg KOH/g of acid value. Predicted FAME contents were 98.4% and 96.3%, with error rates of less than 0.3%. Therefore, when the optimized process of biodiesel production using microwave energy was applied to the Box-Behnken design model, the low error rate could be obtained.