• Title/Summary/Keyword: Waste Acids

Search Result 195, Processing Time 0.025 seconds

Preparation and Characterization of Heterogeneous Anion Exchange Membrane for Recovery of Sulfate Ion from Waste Water (폐수 중 황산이온 회수를 위한 불균질 음이온교환막의 제조 및 특성)

  • Choi, Kuk-Jong;Choi, Jae-Hwan;Hwang, Eui-Hwan;Rhee, Young-Woo;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.247-254
    • /
    • 2007
  • Heterogeneous anion exchange membranes were prepared by compression molding for the recovery of sulfate ion from waste water. The swelling ratio, transport number, and ion exchange capacity of the heterogeneous anion exchange membranes were increased and their electrical resistances were decreased as the amount of ion exchange resin content in the matrix was raised. The tensile strength of the heterogeneous anion exchange membrane was decreased with increasing the amount of ion exchange resin in the LLDPE. The tensile strength for the LDPE heterogeneous membrane containing 30 wt% anion exchange resin showed the highest value. The water content increased with increasing amount of ion exchange resin in the membrane. Moreover the highest transport number of the membrane was 0.86. The electrical resistance of LDPE matrix membrane with 50 wt% resin showed $46.5{\Omega}{\cdot}cm^2$. Current efficiency of electrodialysis for sulfate ion showed the highest value at the current density of $125 mA/cm^2$ in 0.5 mol/L sulfuric acids solution.

Studies on the Production of Fermented Feeds from Agricultural Waste Products (Part Ⅲ) -On the Production of Cellulase by Aspergillus niger and Trichoderma viride- (농산폐기물(農産廢棄物)에서 발효사료(醱酵飼料)의 생산(生産)에 관(關)한 연구(硏究)[제3보(第三報)] -Aspergillus niger와 Trichoderma viride에 의(依)한 Cellulase의 생산성(生産性)에 관(關)하여-)

  • Lee, Ke-Ho;Koh, Jeong-Sam;Park, Sung-O
    • Applied Biological Chemistry
    • /
    • v.19 no.3
    • /
    • pp.130-138
    • /
    • 1976
  • In order to utilize the agricultural waste products, two strains of mold producing powerful cellulolytic enzyme were sereened from various soils, composts, rotten wood and others. The optimum condition of cellulase production was studied. The results obtained were summarized as follows. 1. Two strains of mold which showed remarkably high cellulolytic activity were identified as Aspergillus niger-SM 6 and Trichoderma viride-SM 10. 2. The highest cellulase production was obtained at pH 5.0-6.0 in 5 days. 3. Cellulase production in strain Aspergillus niger-SM 6 increased with the addition of C.M.C., $(NH_4)_2SO_4$, C.S.L., orange peel powder and rice hull. The rice hull, treated with 3N NaOH at $120^{\circ}C$ for 15 min. and neutralized with various acids, was used. Up to 50% of wheat bran could be substituted by the treated rice hull without any decrease of cellulase activity. 4. In the strain of Trichoderma viride-SM 10, cellulase production increased with the addition of C.M.C., $NH_4NO_3$, Vitamin-free casamino acid and orange peel powder, while the other carbon, nitrogen, phosphate sources, natural nutrients and organic substances gave no remarkable effect.

  • PDF

Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process (혐기소화공정에서 항생항균물질이 메탄생성에 미치는 영향)

  • Oh, Seung-Yong;Park, Noh-Back;Park, Woo-Kyun;Chun, Man-Young;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2011
  • BACKGROUND: Anaerobic digestion process is recently adapted technology for treatment of organic waste such as animal manure because the energy embedded in the waste can be recovered from the waste while the organic waste were digested. Ever increased demand for consumption of meat resulted in the excessive use of antimicrobials to the livestocks for more food production. Most antimicrobials administered to animals are excreted through urine and feces, which might highly affect the biological treatment processes of the animal manure. The aim of this study was to investigate the effects of antimicrobials on the efficiency of anaerobic digestion process and to clarify the interactions between antimicrobials and anaerobes. METHODS AND RESULTS: The experiment was consisted of two parts 1) batch test to investigate the effects of individual antibiotic compounds on production of methane and VFAs(volatile fatty acids), and removal efficiency of organic matter, and 2) the continuous reactor test to elucidate the effects of mixed antimicrobials on the whole anaerobic digestion process. The batch test showed no inhibitions in the rate of methane and VFAs production, and the rate of organic removal were observed with treatment at 1~10 mg/L of antimicrobials while temporary inhibition was observed at 50 mg/L treatment. In contrast, treatment of 100 mg/L antimicrobials resulted in continuous decreased in the rate of methane production and organic removal efficiency. The continuous reactor test conduced to see the influence of the mixed antimicrobials showed only small declines in the methane production and organic matter removal when 1~10 mg/L of combined antimicrobials were applied but this was not significant. In contrast, with the treatment of 50 mg/L of combined antimicrobials, the rate of organic removal efficiency in effluent decreased by 2~15% and the rate of biogas production decreased by 30%. CONCLUSION(s): The antimicrobials remained in the animal manure might not be removed during the anaerobic digestion process and hence, is likely to be released to the natural ecosystem. Therefore, the efforts to decline the usage of antimicrobials for animal farming would be highly recommended.

Fiber source and inclusion level affects characteristics of excreta from growing pigs

  • Mpendulo, Conference Thando;Chimonyo, Michael;Ndou, Saymore Petros;Bakare, Archibold Garikayi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.755-762
    • /
    • 2018
  • Objective: The objective of the study was to determine the influence of varying fibrous diets on fecal characteristics of growing pigs. Methods: A total of 104 pigs (initial weight $18{\pm}2.0kg$) were used in the study. They were housed in individual pens and fed on diets containing maize cob, grass hay, lucerne hay, maize stover, and sunflower husk. These fibers were included at 0, 80, 160, 240, 320 and 400 g/kg. Fecal and urine samples were collected. Results: Fecal output was largest amongst pigs fed on diets containing grass hay and maize stover (p<0.05). Nitrogen content was highest in feces from pigs fed on sunflower husk (p<0.05). Pigs fed on diets containing maize stover and maize cobs produced the largest concentrations of short chain fatty acids. Acetate concentration was high in feces of pigs fed maize stover than those fed grass hay and lucerne hay (p<0.05). As the level of fiber inclusion increased, fecal consistency and nitrogen content increased linearly (p<0.05). Urea nitrogen decreased as the inclusion level increased across all the fibers (p<0.05), with maize cobs containing the largest content of urea nitrogen. As dietary fiber content increased, fecal nitrogen content also increased (p<0.05). Conclusion: It was concluded that different fiber sources influence fecal characteristics, thereby having different implications on pig waste management. It is vital to monitor fiber inclusion thresholds so as to easily manage environmental pollutants such as butyrate that contribute to odors.

Production of Fermented Feed from Food Wastes by Using Inoculation (종균 첨가에 의한 음식물 찌꺼기의 발효 사료화)

  • Suh, Eun-Hee;Song, Eun-Seung;Han, Uok;Lee, Sung-Taek;Yang, Jae-Kyung;Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 1997
  • The fermentative conversion of food wastes into feed was investigated by seeding of mixed inoculum YM (Youngjin Environmental co.), and thermotolerant yeast Kl. marxianus. For 6 days' fermentaion, the fermentation method of 2 days' aerobic followed by 4 days' anaerobic was better for the production of organic acids and increasing total microbial population than 6 days' continuous aerobic or anaerobic fermentation. By seeding YM, the total microbial count increased about 100 times of the control group. In addition, Kl. marxianus seeding together with YM increased total viable cell count, but did not increase yeast count significantly.

  • PDF

The Recovery of Carbon Source from Municipal Primary Sludge using Pilot Scale Elutriated Acidogenic Fermentation (Pilot scale 세정산발효를 이용한 하수 일차슬러지의 산발효)

  • Kwon, Kooho;Kim, Siwon;Jung, Yongjun;Min, Kyungsok
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • Pilot scale study was carried out to produce Volatile Fatty Acids with primary sludge from municipal wastewater treatment plant. An acid fermenter was operated at pH 9, $35^{\circ}C$, SRT of 3.5-4.25d, using a final effluent as elutriating water(Mode-I) and pH 9, SRT 5d, temperature of $35^{\circ}C$(Mode-II), $55^{\circ}C$(Mode-III), using a primarily treated water as elutriating water. Although solubilization rate was enhanced with the increase of temperature, the VFAs production rate was decreased. The VS reduction was shown approximately 56%, and the sludge volume reduction was 93%. The optimal conditions for solubilization was obtained at pH 9, $35^{\circ}C$ and SRT of 5d.

Nitration of Toluene with NO2-O3 (이산화질소-오존을 이용한 톨루엔의 니트로화 반응)

  • Cho, Jin-Ku;Kim, Young-Tae;Kim, Young Gyu;Lee, Yoon-Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1085-1089
    • /
    • 1998
  • The well-established nitric acid-sulfuric acid mixed acid process for the nitration of aromatic compounds has serious problems due to the large amount of waste acids and severe reaction conditions. Nitration of toluene can be conducted using nitrogen dioxide and ozone instead of mixed acid. We found that conc. nitric acid increased the reactivity as catalyst and the amount of nitrogen dioxide controlled the extent of nitration. Dinitration proceeded to more than 92 mole % conversion within 2 hr at $0^{\circ}C$ with 6 eq. of nitrogen dioxide and 2 eq./hr of ozone flow. Toluene completed mononitration within 30 min using 3 eq. of nitrogen dioxide, 3 eq. of nitric acid, and 1.5 eq./hr of ozone flow. As a clean process of aromatic nitration, this method is expected to replace the present process which causes the environmental problems.

  • PDF

Duckweed as a Protein Source for Fine-Wool Merino Sheep: Its Edibility and Effects on Wool Yield and Characteristics

  • Damry, J.V. Nolan;Bell, R.E.;Thomson, E.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.507-514
    • /
    • 2001
  • Two experiments were carried out to investigate whether duckweed is useful as a dietary protein source for fine-wool Merino sheep and to evaluate its effects on wool yield and characteristics. In Experiment 1, the sheep were given one of three maintenance diets consisting of oaten chaff (520-700 g/d) supplemented with 16-32 g crude protein/d in the form of fresh (1 kg/d) or sun-dried (50-100 g/d) duckweed. Each ration was estimated to provide 5.4 MJ (1.3 Mcal)/d of metabolisable energy (ME). The sheep readily ingested the fresh or dried duckweed. None of the wool measures (yield, rate of fibre elongation, fibre diameter) differed (p>0.05) between dietary treatments. In Experiment 2, oaten-chaff-based diets (800 g/d) supplying 6.5-7.2 MJ (1.6-1.7 Mcal)/d of ME were supplemented with iso-nitrogenous amounts (4-5 g N) either of urea (8 g), cottonseed meal (60 g) or dried duckweed (100 g). In this experiment, the rate of wool fibre elongation, thought to be related to intestinal amino acid absorption, was lower (p<0.05) for sheep given the oaten chaff/urea diet than for those given either oaten chaff/cottonseed meal or oaten chaff/duckweed for which the rates did not differ (p>0.05). Fibre diameter, which ranged from 16.0-16.7 mm, did not differ (p>0.05) between diets, but tended to be lower on the oaten chaff/urea diet so that volume of wool produced was also significantly lower (p<0.05) on this diet than on the diets containing duckweed or cottonseed meal. Rumen ammonia concentrations at 4.5 and 7.5 h after feeding were higher (p<0.05) for sheep given the oaten chaff/urea diet than for those given the other two diets. A comparison of the rumen ammonia concentrations, wool growth rate and predicted flows of amino acids from the rumen of sheep supplemented with duckweed rather than cottonseed meal suggested that duckweed is a valuable source of 'escape protein' for ruminants.

Fungal Production of Single Cell Oil Using Untreated Copra Cake and Evaluation of Its Fuel Properties for Biodiesel

  • Khot, Mahesh;Gupta, Rohini;Barve, Kadambari;Zinjarde, Smita;Govindwar, Sanjay;RaviKumar, Ameeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.459-463
    • /
    • 2015
  • This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.

Isolation of Lipase Producing Yeast and Optimization of Cultivation Condition (Lipase 생산 효모균주의 분리 및 배양조건 최적화)

  • 박명훈;류현진;오경근
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.148-153
    • /
    • 2004
  • Lipase catalyzes the hydrolysis of glycerides into fatty acids and glycerol. The study of microbial lipases has been stimulated in resent years. It is due to the potential uses of lipases in esterification of oils to glycerol, alcohols and carbohydrates. Development of lipase producing yeast has been focused concerning to the utilization of yeast culture for animal feed. In this study, yeast like cells was isolated from a waste oil and sludge. A strain having higher lipase activity was selected by random mutagenesis using UV-radiation. The optimal cultivation conditions in submerged culture were examined in terms of lipase production. 2.0% of high fructose syrup, 1,0% of CSL, and 1.0% of olive oil were selected as the nutritional media for the production of lipase. The maximum lipase activity of 1.12 U/ml and viable cell number of 8.8${\times}$10$\^$7/ cells/mL were obtained at 27$^{\circ}C$ with an initial pH of 5.0.