• 제목/요약/키워드: Washcoat

검색결과 23건 처리시간 0.028초

모노리스 타입 마이크로 촉매 연소기의 담층 내부 물질전달 및 반응 관계에 관한 연구 (Investigation on the Relationship between Mass Transfer and Reaction within the Washcoat of Monolith Type Micro-scale Catalytic Combustor)

  • 이광구;스즈키 유지
    • 한국연소학회지
    • /
    • 제20권2호
    • /
    • pp.46-53
    • /
    • 2015
  • The relationship between mass transfer and reaction within the washcoat is investigated in a monolith type micro-scale Pt-catalytic combustor. Nondimensionalized balance equation of butane is applied in a simplified washcoat geometry having the shape of slab. Both Thiele modulus and effectiveness factor are considered to compare reaction rate and diffusion rate according to the operation temperature and the diameter of alumina nano-pores. The effect of reaction becomes stronger as the temperature increases, while the effect of diffusion becomes relatively dominant as the diameter of nano-pores increases. From the analysis of butane distribution within the washcoat, design criterion for the thickness of washcoat is discussed.

디젤자동차용 산화촉매의 성능 평가 (Performance Evaluation of Diesel Oxidation Catalysts for Diesel Vehicles)

  • 최병철;박희주;정명근
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.59-64
    • /
    • 2003
  • Recently, as people pay attention to the environmental pollution, the emissions of diesel engine have been a serious problem. We carried out the performance evaluation test of Diesel Oxidation Catalysts (DOC) for HSDI diesel engine equipped vehicles. The DOC, basically coated with Pt catalyst, was manufactured with various washcoat materials. It was found that CO conversion efficiency depends on temperature, but THC conversion efficiency is dominated by temperature and space velocity. The THC and CO conversion efficiencies of aged catalysts were increased with additions of $ZrO_2$ and zeolite B in the washcoat. We found that DOC performance changes with coating techniques, even through it has same washcoat materials. The DOC coated by high temperature washcoat coating technology showed good conversion efficiency than low temperature washcoat coated DOC.

이중층 워시코트 Rh-Pd-Pt 삼원촉매의 열적 열하에 따른 반응 특성 (Characteristics of Rh- Pd- Pt Three-Way Catalysts with Double-Layer Washcoat on the Hydrothermal Aging)

  • 최병철;정종우;손건석;정명근
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.8-16
    • /
    • 2006
  • The research was conducted to characterize of Rh-Pd-Pt TWC with a double-layer washcoat for gasoline vehicle. The physical characteristics on surface of catalyst were inspected by BET, SEM and TEM. The characteristics of catalytic reaction were examined by the TPD/TPR and CO-pulse chemisorption. The catalyst $6Hx(0.35\times11\times3)$ showed superior conversion performance after hydrothermal aging process, which was due to small difference of the surface area between. the fresh and the aged catalyst. The CO-chemisorption and surface area were superior in the 600 cpsi catalyst than other catalysts, this catalyst also shown the higher conversion efficiency of the exhaust emissions. From the TPR test, the conversion performance of the aged catalyst was decreased by the agglomeration and sintering of the PM and metal oxides. From the TPD result, it was found that the NO chemisorption was happed on the bottom-layer washcoat with Pd, and the NO chemisorption was re-happened on the upper-layer washcoat with Pt and Rh in the desorption process.

촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 효율적인 전산유체역학 해석모델 (Efficient Computational Fluid Dynamics Model for Microchannel-Type Steam/Methane Reformers with Nickel Washcoat Catalyst Layers Based on Effectiveness Factor Correlations)

  • 오윤석;정아름;남진현
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.749-760
    • /
    • 2022
  • An efficient computational fluid dynamics model was proposed for simulating microchannel-type steam/methane reformers with thin washcoat catalyst layers. In this model, by using the effectiveness factor correlations, the overall reaction rate that occurs in the washcoat catalyst layer could be accurately estimated without performing the detailed calculation of heat transfer, mass transfer, and reforming reactions therein. The accuracy of the proposed model was validated by solving a microchannel-type reformer, once by fully considering the complex steam/methane reforming (SMR) process inside the washcoat layer and again by simplifying the SMR calculation using the effectiveness factor correlations. Finally, parametric studies were conducted to investigate the effects of operating conditions on the SMR performance.

린번 천연가스자동차용 산화촉매의 정화 및 열화특성 (Conversion and Aging Characteristics of Oxidation Catalyst for Natural Gas Vehicle with Lean-burn System)

  • 최병철;윤성식;정종우
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.134-139
    • /
    • 2003
  • This study was carried out to investigate the aging and conversion characteristics of oxidation catalysts for a natural gas vehicle with lean-bum system. The conversion of $CH_4$ was observed over the various composition ratio of PMs(Precious metals) and washcoating methods. On the fresh catalysts, Pd affected on the activity of $CH_4$ at low temperature more than other PMs in Pd-only and Rh/Pd/Pt catalysts. The activity at low temperature increased as a mount of Pd increases. On the aged catalysts, the $CH_4$ conversion efficiency of Pd-only catalyst with mono-layer washcoat decreased more than that of the other catalysts of $CH_4$ conversion. It was observed that the thermal durability of Rh/Pd/Pt catalysts with double-layer washcoat was better than the single washcoat catalyst.

촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 간략화된 1차원 해석모델의 개발 (Development of Simplified One-dimensional Model for Microchannel Steam/Methane Reformers based on Catalyst Effectiveness Factor Correlations)

  • 오윤석;이대훈;남진현
    • 신재생에너지
    • /
    • 제19권2호
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, an efficient one-dimensional model was developed for predicting microchannel steam/methane reformers with thin washcoat catalyst layers with a focus on low-pressure reforming conditions suitable for distributed hydrogen production systems for fuel cell applications. The governing equations for steam/methane mixture gas flowing through the microchannel reformer were derived considering the species conservation with reforming reactions and energy conservation with external convective heat supply. The reaction rates for the developed model were simply determined through the catalyst effectiveness factor correlations instead of performing complicated calculations for the steam/methane reforming process occurring inside the washcoat catalyst layers. The accuracy of the developed was verified by comparing the results obtained herein with those obtained by the detailed computational fluid dynamics calculation for the same microchannel reformer.

De-Ash Characteristics using a Cleaning Agent KOH of CDPF for PM Reduction of Diesel Engines

  • Seo, Choong-Kil
    • 동력기계공학회지
    • /
    • 제20권1호
    • /
    • pp.30-35
    • /
    • 2016
  • The objective of this study is to investigate the physicochemical properties of the catalysts and the feasibility of remanufacturing them after removing ash in CDPF using a cleaning agent KOH. Compared with the carbon oxidation ability of fresh CDPF, that of de-ashed CDPF had an insignificant difference due to the low activation energy of CO and $CO_2$. As ash deposited in CDPF was de-ashed with KOH, it had a practical feasibility on remanufacturing point of view, but washcoat was melted about 26%. Further studies were required for the prevention of washcoat loss.

Ash 세정제에 따른 CDPF의 물리화학적 특성 (Physicochemical Characteristics of CDPF according to Ash a Cleaning agent)

  • 서충길
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.641-647
    • /
    • 2017
  • 디젤 엔진은 가솔린기관에 비해 강력한 파워와 연료의 경제성 및 $CO_2$ 배출양이 적어 상용차뿐만 아니라 일반승용차에서도 시장의 수요가 지속적으로 증가하고 있다. 디젤 엔진의 연소특성상 국부적인 고온반응 영역에서 질소산화물과 확산연소 영역에서 입자상물질이 많이 배출되므로 엄격해진 배기규제를 충족시키기 위해서 자동차와 선박등 촉매후처리장치 장착의 비중이 점차 증가하고 있다. 그 중 입자상물질 저감장치로써 입자상물질필터가 장착되어 왔으나 PM중 약 50%가 연료와 엔진오일에서 석출된 재 성분이 침적되면 필터를 손상시키므로 고온의 연소방식이 아닌 세정제를 이용한 제거기술이 절실히 필요하다. 이 연구의 목적은 디젤 엔진용 촉매코팅된 디젤입자상물질필터에 침적된 재를 세정을 함에 있어서 촉매의 물질의 물리화학적인 특성을 연구하는 것이다. 30분 동안 세정제에 담근 S4 샘플은 침투력이 강한 성분으로 인하여 입자들끼리 응집되고 수축되었다. 재에 침투력이 강한 침투제와 물과 기름을 혼합시켜주는 계면활성제 성분이 적절하게 제조된 S1 샘플의 세정특성이 가장 좋았다. 침투제인 수산화칼륨과 규산나트륨 성분이 첨가된 S4 샘플의 와쉬코트 손실률은 약 13%로 증가하였다. 촉매코팅된 디젤입자상물질필터의 와쉬코트 손실률이 약 13% 이하조건에서 유해가스 성분을 저감시킬 수 있었다.

CNG 버스용 NGOC/LNT 촉매의 CH4와 NOx의 동시 저감 (Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses)

  • 서충길
    • 한국산학기술학회논문지
    • /
    • 제19권6호
    • /
    • pp.167-175
    • /
    • 2018
  • 천연 가스는 공기 오염 물질을 거의 배출하지 않는 깨끗한 연료입니다. 이 연구의 목적은 CNG 버스용 NGOC/LNT(천연가스산화촉매/질소산화물흡장)촉매의 메탄과 질소산화물 동시 저감에 관한 연구로 메탄과 질소산화물 저감 성능 개선과 관련하여 조촉매, washcoat 담지량, 교반 시간 및 담체 종류에 대해 주로 초점을 두었다. 더구나, 니켈은 알칼리성의 독성 산화물이고 메탄에 영향을 미치는 효과가 있기 때문에, 3 wt% 니켈이 담지된 천연가스산화촉매는 일반적으로 메탄 전환율을 통해 우수한 메탄 감소 성능을 나타낸다. 담체에 담지량이 적으면 유해 가스의 흡장량이 충분치 않고 워시 코트가 너무 많이 담지되면 담체의 셀이 막히게 되었다. 촉매의 경제적을 고려할 때 촉매에 담지되는 양은 124g/L가 적절하다. 물질마다 5시간 동안 교반된 NGOC/LNT 촉매의 200에서 550도 까지 NOx 전환율은 2시간 동안 교반된 NGOC/LNT 촉매보다 전체 온도 범위에서 10-15% 우수한 성능을 보였다. 세라믹 담체의 NGOC/LNT 촉매는 메탈 담체보다 약 20% 수준의 높은 메탄 저감 성능을 나타냈다.

상용 디젤엔진용 산화촉매의 배출가스 저감 특성 (Emission Characteristics of Diesel Oxidation Catalysts for a Commercial Diesel Engine)

  • 최병철;이춘희;박희주;정명근;권정민;신병선;김상수
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.18-23
    • /
    • 2002
  • Recently, as people pay attention to the environmental pollution, the emission of diesel engine has become a serious problem. Diesel Oxidation Catalysts(DOC) were experimentally investigated for the purification of pollutants exhaust emission from the diesel engine. In this study, the conversion efficiency of exhaust gas was investigated with various washcoat materials of the DOC. It was formed that CO conversion efficiency depended on temperature, but THC conversion was dominated by temperature and space velocity. Conversion efficiency of THC and CO increased with the addition of ZSM-5 in the washcoat, whereas these conversion efficiency decreased by adding Nd and Ba additives. $V_2O_5$ additive had the thermal stability for high temperature. Thermal durability of the catalyst was improved as increase of $V_2O_5$ additive.

  • PDF