• Title/Summary/Keyword: Warpage analysis

Search Result 134, Processing Time 0.022 seconds

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

Design of Gate Locations, Molding Conditions, and Part Structure to Reduce the Warpage of Short-Fiber Reinforced Injection Molded Part (단섬유 보강 사출성형품의 휨 감소를 위한 게이트 위치, 성형 조건 및 제품 구조 설계)

  • Choi, D.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.443-448
    • /
    • 2008
  • Fiber reinforced injection molded parts are widely used in recent years because of their improved properties of materials such as specific stiffness, specific strength, and specific toughness. The demand for products with high precision is increasing and it is important to minimize the warpage of the products. The warpage of short-fiber reinforced product is caused by anisotropy induced by fiber orientation as well as the residual stresses induced during the molding process. In order to reduce the warpage of the part, it is important to achieve successful mold design, processing control, and part design. In the present study, the design of gating system, molding condition, and part structure were carried out and verified with numerical analysis using a commercial CAE code Moldflow. The numbers and locations of gates were iteratively determined, and the molding conditions which can decrease the warpage of the part were investigated. Finally, slight structural modification of the part was conducted to reduce the locally concentrated warpage.

Warpage Analysis of Fiber Reinforced Injection Molded Parts (단섬유 보강 이방성 사출성형품의 휨 해석)

  • Chung, Seong-Taek;Kim, Jin-Gon;Koo, Bon-Heung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1968-1799
    • /
    • 2000
  • A warpage analysis program has been developed for fiber-reinforced injection molded parts. The warpage is predicted from the residual stress and anisotropic thermo-mechanical properties coupled with fiber orientation in the integrated injection molding simulation. A simple elastic model is used for the calculation of thermally and pressure-induced residual stresses which are employed as the initial conditions in the structural analysis. To improve the reliability of warpage analysis, a new triangular flat shell element superimposing well-known efficient plate bending and membrane element is presented. The numerical examples address the necessity to use anisotropic models for fiber-reinforced materials and show that predicted warpage is in good agreement with experimentally measured one.

Integrated CAE Analysis to Predict Warpage of Fiber Reinforced Injection Molded Parts (단섬유 보강 사출성형품의 휨 예측을 위한 통합 CAE 해석)

  • Kim, Jin-Gon;Chung, Seong-Taek
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.745-750
    • /
    • 2000
  • A warpage analysis program has been developed for fiber-reinforced injection molded parts. The warpage is Predicted from the residual stress and anisotropic thermo-mechanical properties coupled with fiber orientation in the integrated injection molding simulation. A simple elastic model is used for the calculation of thermally and pressure-induced residual stresses which are employed as the initial conditions in the structural analysis. To improve the reliability of warpage analysis, a new triangular flat shell element superimposing well-known efficient plate bending and membrane element is presented. The numerical examples address the neccesity to use anisotropic models for fiber-reinforced materials and show that predicted warpage is in good agreement with experimentally measured one.

  • PDF

Study on Design Parameters of Substrate for PoP to Reduce Warpage Using Finite Element Method (PoP용 Substrate의 Warpage 감소를 위해 유한요소법을 이용한 설계 파라메타 연구)

  • Cho, Seunghyun;Lee, Sangsoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.61-67
    • /
    • 2020
  • In this paper, we calculated the warpage of bare substrates and chip attached substrates by using FEM (Finite Element Method), and compared and analyzed the effect of the chips' attachment on warpage. Also, the effects of layer thickness of substrates for reducing warpage were analyzed and the conditions of layer thickness were analyzed by signal-to-noise ratio of Taguchi method. According to the analysis results, the direction of warpage pattern in substrates can change when chips are attached. Also, the warpage decreases as the difference in the CTE (coefficient of thermal expansion) between the top and bottom of the package decreases and the stiffness of the package increases after chips are loaded. In addition, according to the impact analysis of design parameters on substrates where chips are not attached, in order to reduce warpage, the inner layers of the circuit layer Cu1 and Cu4 has be controlled first, and then concentrated on the thickness of the solder resist on the bottom side and the thickness of the prepreg layer between Cu1 and Cu2.

Warpage Analysis for Top and Bottom Packages of Package-on-Package Processed with Thin Substrates (박형 기판을 사용한 Package-on-Package용 상부 패키지와 하부 패키지의 Warpage 분석)

  • Park, D.H.;Shin, S.J.;Ahn, S.G.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.61-68
    • /
    • 2015
  • Warpage analysis has been performed for top and bottom packages of thin package-on-packages processed with different epoxy molding compounds (EMCs). Warpage deviation was measured for packages molded with the same EMCs and also the warpage deviations of top and bottom substrates themselves were characterized in order to identify the major factor causing the package warpage. For the top and bottom packages processed with thin substrates, the warpage deviation of the substrates was large, which made it difficult to figure out the effect of EMC properties on the package warpage. Top packages, where the molding area of $13mm{\times}13mm$ covered the most of the substrate area ($14mm{\times}14mm$), exhibited similar warpage behavior with changing the temperature. On the other hand, bottom packages, where the molding area was only $8mm{\times}8mm$, exhibited the complex warpage behavior due to simultaneous occurrence of (+) and (-) warpages on the same package. Accordingly, the bottom packages showed dissimilar temperature-warpage behavior even being processed with the same EMCs.

A Study on Plastic Injection Molding for Warpage Characteristics Evaluation of Mobile Phone Cover (모바일폰 커버의 휨특성 평가를 위한 사출 성형에 관한 연구)

  • Kim O. R.;Kim M. Y.;Lee S. H.;Kwon C. O.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.76-81
    • /
    • 2006
  • In this study, warpage characteristics of mobile phone cover through injection molding process were investigated using design of experiments in injection molding process. Warpage in plastic injection molding has a significant effect on quality of product. Effects of injection time, packing pressure, packing time, mold temperature and melt temperature on the warpage of mobile phone cover were considered by numerical analysis and experiment with Taguchi method. The degree of warpage for the injection molded part was measured by using three dimensional coordinate measurement machine. It was shown that temperature control factor has more significant effect on the warpage of mobile phone cover than pressure control factor.

A Study on Manufacturing of Plastic Injection Mold for Warpage Characteristics of Mobile Phone Cover (모바일폰 커버의 휨특성 평가를 위한 금형 제작에 관한 연구)

  • Kim M. Y.;Lee S. H.;Kwon C. O.;Kim O. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.126-131
    • /
    • 2005
  • In the present study, warpage characteristics of mobile phone cover through injection molding process were investigated by using design of experiments. Warpage in plastic injection molding process has a significant effect on quality of product. Effects of injection time, packing pressure, packing time, mold temperature ana melt temperature on warpage of mobile phone cover were considered by CAE analysis and experiment with Taguchi method. The degree of warpage for the injection molded product was measured by using three dimensional CMM. It was shown that temperature parameter has more significant effect on the warpage of mobile phone cover than pressure parameter.

  • PDF

Time-Dependent Warpage Analysis for PCB Considering Viscoelastic Properties of Prepreg (Prepreg의 점탄성 특성을 고려한 PCB의 Time-Dependent Warpage 분석)

  • Chanhee Yang;Chang-Yeon Gu;Min Sang Ju;Junmo Kim;Dong Min Jang;Jae Seok Jang;Jin Woo Jang;Jung Kyu Kim;Taek-Soo Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.23-27
    • /
    • 2024
  • In this study, the time-dependent warpage behavior caused by the viscoelastic properties of prepreg in a printed circuit board (PCB) was analyzed by finite element method (FEM). The accurate viscoelastic properties of the prepreg were measured by stress relaxation test, which were then incorporated into constructed warpage analysis model. When the PCB was subjected to repeated thermal cycles, the warpage of the PCB was restored to its initial state when only the elastic properties of the prepreg were considered, but when the viscoelastic properties were also considered, the warpage was not restored and permanent warpage change occurred. The warpage analysis for three different types of prepreg was conducted to compare their mechanical reliability, and the results showed that materials with elastic properties dominating over viscoelastic properties experienced less warpage, resulting in better mechanical reliability.

Study on Behavior Characteristics of Embedded PCB for FCCSP Using Numerical Analysis (수치해석을 이용한 FCCSP용 Embedded PCB의 Cavity 구조에 따른 거동특성 연구)

  • Cho, Seunghyun;Lee, Sangsoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we used FEM technique to perform warpage and von Mises stress analysis on PCB according to the cavity structures of embedded PCB for FCCSP and the types of prepreg material. One-half substrate model and static analysis are applied to the FEM. According to the analysis results of the warpage, as the gap between the cavity and the chip increased, warpage increased and warpage increased when prepreg material with higher modularity and thermal expansion coefficient was applied. The analysis results of the von Mises stress show that the effect of the gap between the cavity and the chip varies depending on prepreg material. In other words, when material whose coefficient of thermal expansion is significantly higher than that of core material, the stress increased as the gap between the cavity and the chip increased. When the prepreg with the coefficient of thermal expansion lower than the core material is applied, the result of stress is opposite. These results indicate that from a reliability perspective, there is a correlation between the structure of the cavity where embedded chips are loaded and prepreg material.