• Title/Summary/Keyword: Warehouse Location Problem

Search Result 22, Processing Time 0.02 seconds

A New Method for Warehouse Location Problem (창고설치문제를 위한 새로운 해법)

  • 박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.8 no.1
    • /
    • pp.27-30
    • /
    • 1983
  • The purpose of this paper is to find a new method for the warehouse location problem. Akinc and Khumatvala developed a branch and bound algorithm for a one-stage problem, that is, plants and warehouses are at the same location. This paper extends this method to a two-stage problem, that is, plants, warehouses and users are located at different sites, and further this paper allows direct flows from plants to users. The new method is tested at Perkins-Elmer. The test shows that the algorithm is efficient.

  • PDF

Cross Decomposition Applied to the Intermediate Warehouse Location Problem (교차분해법을 이용한 이단계유통체계에서의 중간창고의 입지선정)

  • 차동완;정기호;허원수
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.9 no.2
    • /
    • pp.3-8
    • /
    • 1984
  • This paper considers the intermediate warehouse location problem in a two stage distribution system where commodities are delivered from the given set of capacitated factories to customers via uncapacitated intermediate warehouses. In order to determine the subset of warehouses to open which minimizes the total distribution costs including the fixed costs associated with opening warehouses, the cross decomposition method for mixed integer programming recently developed by T.J. Van Roy is used. The cross decomposition unifies Benders decomposition and Lagrangean relaxation into a single framework that involves successive solutions to a primal subproblem and a dual subproblem. In our problem model, primal subproblem turns out to be a transshipment problem and dual subproblem turns out to be an intermediate warehouse location problem with uncapacitated factories.

  • PDF

The Picking Lead Time for the Picking Batch Size in a Warehouse System (창고시스템에서 인출 배치크기에 대해 인출소요시간)

  • Chang, Suk Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.17-24
    • /
    • 2013
  • This paper is to analyze the picking lead time for picking batch size in a warehouse system and to get minimum picking batch size that is the warehouse system feasible. The warehouse system consists of aisles and racks, which two racks face each other through aisle. The products are picked from the storage locations by batch size. The probability that items are picked in the each row of the rack in the aisle for order picking activity is derived. The picking lead time for picking batch size is the time passed from the first picking location to arrival at starting location in aisle picking all items included in a batch size. The picking lead time for picking batch size in an aisle is analyzed. The picking lead time for picking batch size in the whole warehouse system is obtained. The warehouse system is feasible if all items that customers order are picked from the storage locations for same period. The picking batch size that is the warehouse system feasible is obtained. The problem is analyzed, a solution procedure is developed, and a numerical example is shown to explain the problem.

Optimal and Approximate Solutions of Object Functions for Base Station Location Problem (기지국 위치 문제를 위한 목적함수의 최적해 및 근사해)

  • Sohn, Surg-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.179-184
    • /
    • 2007
  • The problem of selecting base station location in the design of mobile communication system has been basically regarded as a problem of assigning maximum users in the cell to the minimum base stations while maintaining minimum SIR. and it is NP hard. The objective function of warehouse location problem, which has been used by many researchers, is not proper function in the base station location problem in CDMA mobile communication, The optimal and approximate solutions have been presented by using proposed object function and algorithms of exact solution, and the simulation results have been assessed and analyzed. The optimal and approximate solutions are found by using mixed integer programming instead of meta-heuristic search methods.

A Study on the Brand-based Warehouse Management in Online Clothing Shops (온라인 쇼핑몰의 브랜드 중심 창고관리 기법에 대한 연구)

  • Song, Yong-Uk;Ahn, Byung-Hyuk
    • Journal of Information Technology Applications and Management
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2011
  • As the sales volume of online shops increases, the job burden in the back-offices of the online shops also increases. Order picking is the most labor-intensive operation among the jobs in a back-office and mid-size pure click online shops are experiencing the time delay and complexity in order picking nowadays while fulfilling their customers' orders. Those warehouses of the mid-size shops are based on manual systems, and as order pickings are repeated, the warehouses get a mess and lots of products in those warehouses are getting missing, which results in severe delay in order picking. To overcome this kind of problem in online clothing shops, we research a methodology to locate warehousing products. When products arrive at a warehouse, they are packed into a box and located on a rack in the warehouse. At this point, the operator should determine the box to be put in and the location on the rack for the box to be put on. This problem could be formulated as an Integer Programming model, but the branch-and bound algorithm to solve the IP model requires enormous computation, and sometimes it is even impossible to get a solution in a proper time. So, we relaxed the problem, developed a set of heuristics as a methodology to get a semi-optimum in an acceptable time, and proved by an experiment that the solutions by our methodology are satisfactory and acceptable by field managers.

A Study on A Methodology for Centralized Warehouse Problem Considering Multi-item and Budget Constraint (다품종 예산제약을 고려한 중앙창고문제 해결방법론에 대한 연구)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.126-132
    • /
    • 2012
  • This paper deals with a centralized warehouse problem with multi-item and capacity constraint. The objective of this paper is to decide the number and location of centralized warehouses and determineorder quantity (Q), reorder point (r) of each centralized warehouse to minimize holding, setup, penalty, and transportation costs. Each centralized warehouse uses continuous review inventory policy and its budget is limited. A SA (Simulated Annealing) approach is developed and its performance is tested by using some computational experiments.

Density-Order Index Rule for Stock Location in a Distribution Warehouse

  • Hwang, Hark;Cha, Chun-Nam
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 1989
  • This paper deals with the problem of space allocation of items within a warehouse. Recognizing the importance of weights associated with material handling, mathematical models are developed for two cases, out-and-back selection and storage retrieval interleaving. It is proved that the density order index rule we proposed generates an optimal solution for the first model. An example problem solved with the pairwise interchange method indicates that the rule is also fairly efficient for the second model. The proposed rule is compared with other assignment rules of warehouse space such as COI rule, space and popularity.

  • PDF

Minimize Order Picking Time through Relocation of Products in Warehouse Based on Reinforcement Learning (물품 출고 시간 최소화를 위한 강화학습 기반 적재창고 내 물품 재배치)

  • Kim, Yeojin;Kim, Geuntae;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.90-94
    • /
    • 2022
  • In order to minimize the picking time when the products are released from the warehouse, they should be located close to the exit when the products are released. Currently, the warehouse determines the loading location based on the order of the requirement of products, that is, the frequency of arrival and departure. Items with lower requirement ranks are loaded away from the exit, and items with higher requirement ranks are loaded closer from the exit. This is a case in which the delivery time is faster than the products located near the exit, even if the products are loaded far from the exit due to the low requirement ranking. In this case, there is a problem in that the transit time increases when the product is released. In order to solve the problem, we use the idle time of the stocker in the warehouse to rearrange the products according to the order of delivery time. Temporal difference learning method using Q_learning control, which is one of reinforcement learning types, was used when relocating items. The results of rearranging the products using the reinforcement learning method were compared and analyzed with the results of the existing method.

Indoor Location and Pose Estimation Algorithm using Artificial Attached Marker (인공 부착 마커를 활용한 실내 위치 및 자세 추정 알고리즘)

  • Ahn, Byeoung Min;Ko, Yun-Ho;Lee, Ji Hong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.240-251
    • /
    • 2016
  • This paper presents a real-time indoor location and pose estimation method that utilizes simple artificial markers and image analysis techniques for the purpose of warehouse automation. The conventional indoor localization methods cannot work robustly in warehouses where severe environmental changes usually occur due to the movement of stocked goods. To overcome this problem, the proposed framework places artificial markers having different interior pattern on the predefined position of the warehouse floor. The proposed algorithm obtains marker candidate regions from a captured image by a simple binarization and labeling procedure. Then it extracts maker interior pattern information from each candidate region in order to decide whether the candidate region is a true marker or not. The extracted interior pattern information and the outer boundary of the marker are used to estimate location and heading angle of the localization system. Experimental results show that the proposed localization method can provide high performance which is almost equivalent to that of the conventional method using an expensive LIDAR sensor and AMCL algorithm.

A Study on the Optimal Warehouse Location Problem by Using the Branch & Bound Algorithm (창고입지선정문제(倉庫立地選定問題)의 최적해법(最適解法)에 관한 연구(硏究))

  • Lee, Deuk-U;Lee, Sang-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 1986
  • This paper deals with the problem of the optimal location of warehouses in the two stage distribution system, i.e., the distribution system where the product is transported from plants to customer areas via warehouses. The Problem is formulated with a zero-one mixed integer programming and an efficient branch and bound algorithm is then used to solve the problem. In order to obtain the solution of this problem, this paper shows the procedure of conversion of two stage distribution system into one stage distribution system. An improved method of solving the linear programming at the nodes and branching decision rule is also showed by this study.

  • PDF