• Title/Summary/Keyword: Wall-following method

Search Result 159, Processing Time 0.027 seconds

A Study on the Wall Following Method of the Motorized Wheelchair (전동휠체어의 벽면추종 기법에 관한 연구)

  • 최인구;이응혁
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.209-216
    • /
    • 1994
  • The objective of the research reported in this paper is to design locomotion system of the motorized wheelchair, to develope the wall following algorithm. The indoor navigation of a motorized wheelchair can be based on the wall following techniques. In this paper, it is proposed to enhance stability and efficiency using the 3 ultrasonic sensors arranged at a same perpendicular pivot. Using this method, the angle between the motorized wheelchair and the wall is detected and the range of control commands has been increased. For the better stability, the calculated slope of a wall using LSLF algorithm was fed back to the control part. By adapting the suggested algorithm and method, the motorized wheelchair could follow a wall in 4 seconds, for a change of distance between the wheelchair and wall from 30 to 100cm.

  • PDF

A Wall-Following Method of Mobile Robot for Mapping (Mapping을 위한 자율이동로붓의 Wall Following 기법)

  • Lee, Kang-Min;Lim, Dong-Kyun;Kim, Hyung-Geun;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.102-105
    • /
    • 2005
  • A Effective wall following plays important role for the mapping behaviors which determine the entire memory size and the shape of map before building a map. In case of wall following, attacking those cause by curved wall or obstacles brings a bad stuff that makes ripples on the moving trajectory. These types of ripples come to an end with problems that increase the load of calculation and sensing errors. In this paper, a new sensing method and its corresponding controller are suggested for problems. It minimizes the occurrence of the trajectory ripples.

  • PDF

Following a Wall by an Mobile Robot with Sonar Sensors and Infrared Sensors (초음파센서와 적외선센서를 갖는 이동로봇의 벽면 따르기)

  • 윤정원;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.423-423
    • /
    • 2000
  • This paper proposes an effective algorithm for following a wall by an autonomous mobile robot with sonar sensors and infrared sensors in an indoor environment. The proposed method uses deadreckoning to estimate the current position and orientation of a mobile robot. Sonar sensor data are used to estimate shape and position of wall using proposed algorithm. Infrared sensor data are used as assistant when sonar sensor data is uncertain. Simulation results using mobile robot show that the proposed algorithm is proper for the following wall.

  • PDF

Effectiveness of the ultrasonography in the evaluation following orbit wall reconstruction (안와벽 재건술 시행 후 평가방법으로서 초음파의 효용성)

  • Kim, Chang Yun;Yang, Jeong Yeol;Cheon, Ji Seon;Moon, Jae won
    • Archives of Plastic Surgery
    • /
    • v.36 no.4
    • /
    • pp.428-431
    • /
    • 2009
  • Purpose: Blow out fracture resulting from facial trauma is of high frequency among facial bone fractures, and can cause severe complications. So, proper management and close observation after operation are needed. So far, Computed tomography has been the best choice in the evalution following orbit wall reconstruction. However, cost - effectiveness, accessibility to patients and hazard of radiation exposure of computed tomography require supplementary measure for the evaluation following orbit wall reconstruction. This study was performed to describe the effectiveness of ultrasonography in the evalution following orbit wall reconstruction. Methods: A retrospective study was performed on 40 patients who underwent orbit wall reconstruction from June, 2008 to July, 2008. The patients' ages ranged from 13 to 65 years (mean 27.5 years), and this group was compsoed of 27 male and 13 female patients. The follow up period ranged from 2 weeks to 28 weeks (mean 11weeks). Preoperatively, all fractures were diagnosed using computed tomography. Ultrasonography for all cases, and computed tomography for 2 cases were performed for evaluation following orbit wall reconstruction. Results: Reduction of herniated orbital soft tissue and orbit implant was identified by using ultrasonography in 38 cases out of 40 cases. In other cases which we could not identify the orbit implant, computed tomography was performed. Con clusion: Compared to computed tomography, ultrasonography is simple, inexpensive and convenient method. Ultrasonography can be used as supplementary measure to computed tomography in the evaluation following orbit wall reconstruction for elective patients.

The Method of Following Wall with the Motorized Wheelchair for the Disabled (지체부자유자를 위한 전동휠체어의 벽면추종기법(II))

  • Choi, In-Ku;Kim, Byung-Su;Lee, Eung-Hyuk;Jung, Dong-Myung;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.44-47
    • /
    • 1993
  • In this paper, the wall follwing method of a motorized wheelchair is discussed. The wall fellowing problem is characterized by maintaining a constant distance to the wall, which should be possible using a distance measuring sensor only. Ultrasonic sensors are cheap are fairly simple to use in this case. The main problem is the calculation of the distance and orientation of the wheelchair with respect the wall from the sensor data. This is solved by the method that sensor data is obtained from 3 ultrasonic sensors arranged at a same perpendicular pivot. The results show that a new method is very effiecient for a motorized wheelchair.

  • PDF

Algorithm for Autonomous Wall-Following of Wheeled Mobile Robots Using Reference Motion Synthesis and Generation of Hybrid System (하이브리드 시스템의 기준동작 구성과 생성에 의한 차륜형 이동로봇의 자율 벽면-주행 알고리즘)

  • Lim, Mee-Seub;Im, Jun-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.586-593
    • /
    • 2000
  • In this paper we propose a new approach to the autonomous wall-following of wheeled mobile robots using hybrid system reference motion synthesis and generation. The hybrid system approach is in-troduced to the motion control of nonholonomic mobile robots for the indoor navigation problems. In the dis-crete event system the discrete states are defined by the user-defined constraints and the reference mo-tion commands are specified in the abstracted motions. The hybrid control system applied for the non-holonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoid-ance for the indoor navigation problem. Simulation results show that hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Phrenoplasty [Diaphragmatic Thoracoplasty]: Report of 5 Cases (횡격막 성형술: 5례 보고)

  • 배두현
    • Journal of Chest Surgery
    • /
    • v.3 no.2
    • /
    • pp.113-120
    • /
    • 1970
  • Since the turn of the century there has been a constant search for a satisfactory method of controlling a large intrathoracic space following lobectomy. Primarily these methods consist of thoracoplasty, plombage, and phrenic nerve paralysis which are not completely satisfactory for they may result in loss of chest wall motility or diaphragmatic function. Incising the diaphragm at its periphery and resuturing to the chest wall at a level several rib spaces higher is an effective method of reducing intrathoracic space with minimal interference with pulmonary function. It is of particular value when the anticipated space problem is in the lower part of the thoracic cavity. Five cases are presented in which the diaphragm was peripherally detached and advanced to higher levels. Two cases were following lower lobectomy and three cases were following decortication for chronic empyema in which expansion was not good enough to adequately fill the space. Results in these cases were satisfactory.

  • PDF

Seismic Reliability Assessment of Mid- and High-rise Post-tensioned CLT Shear Wall Structures

  • Sun, Xiaofeng;Li, Zheng;He, Minjuan
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.175-185
    • /
    • 2020
  • Currently, few studies have been conducted to comprehend the seismic reliability of post-tensioned (PT) CLT shear wall structures, due to the complexity of this kind of structural system as well as due to lack of a reliable structural model. In this paper, a set of 4-, 8-, 12-, and 16-storey benchmark PT CLT shear wall structures (PT-CLTstrs) were designed using the direct displacement-based design method, and their calibrated structural models were developed. The seismic reliability of each PT-CLTstr was assessed based on the fragility analysis and based on the response surface method (RSM), respectively. The fragility-based reliability index and the RSM-based reliability index were then compared, for each PT-CLTstr and for each seismic hazard level. Results show that the RSM-based reliabilities are slightly less than the fragility-based reliabilities. Overall, both the RSM and the fragility-based reliability method can be used as efficient approaches for assessing the seismic reliabilities of the PT-CLTstrs. For these studied mid- and high-rise benchmark PT-CLTstrs, following their fragility-based reliabilities, the 8-storey PT-CLTstr is subjected to the least seismic vulnerability; while, following their RSM-based reliabilities, the 4-storey PT-CLTstr is subjected to the least seismic vulnerability

Efficient Exploration for Room Finding Using Wall-Following based Path Planning (벽추종 경로계획 기반의 효과적인 방 찾기 탐사)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1232-1239
    • /
    • 2009
  • This paper proposes an exploration strategy to efficiently find a specific place in large unknown environments with wall-following based path planning. Many exploration methods proposed so far showed good performance but they focused only on efficient planning for modeling unknown environments. Therefore, to successfully accomplish the room finding task, two additional requirements should be considered. First, suitable path-planning is needed to recognize the room number. Most conventional exploration schemes used the gradient method to extract the optimal path. In these schemes, the paths are extracted in the middle of the free space which is usually far from the wall. If the robot follows such a path, it is not likely to recognize the room number written on the wall because room numbers are usually too small to be recognized by camera image from a distance. Second, the behavior which re-explores the explored area is needed. Even though the robot completes exploration, it is possible that some rooms are not registered in the constructed map for some reasons such as poor recognition performance, occlusion by a human and so on. With this scheme, the robot does not have to visit and model the whole environment. This proposed method is very simple but it guarantees that the robot can find a specific room in most cases. The proposed exploration strategy was verified by various experiments.

Driving Environment Recognition and a Simple Wall-Following Algorithm for AGV Using Sonar Sensor (초음파 센서를 이용한 AGV의 주행 환경 인식과 간단한 벽면 따르기 알고리즘)

  • Kim, Seong-Joong;Lee, Jeong-Woong;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2337-2340
    • /
    • 2002
  • This paper presents the method of AGV(Automatic guided vehicle)'s moving environment(plane, corner, edge) recognition using SONAR sensor configuration. As for the SONAR sensor, the Crosstalk effect has been generally considered as an inevitable noisy phenomenon in the indoor environment. However, this effect can be used as a clue for classifying and localizing targets in the indoor environment if those can be controlled and used well. EERUF(error eliminate rapid ultrasonic firing) is a method for firing multiple ultrasonic sensors in mobile robot application and multi-echo mode of POLARIOD Device can reduce the Crosstalk effect. Here, Crosstalk effect was reduced using EERUF and applied to the AGV with a simple wall-following algorithm in the indoor environment. This method was tesed by a typical AGV with multi SONAR sensors in the laboratory environment.

  • PDF