• Title/Summary/Keyword: Wall pile

Search Result 209, Processing Time 0.019 seconds

A case study on reinforcement and design application of reinforced earth wall using micro pile (마이크로 파일을 이용한 블록식 보강토옹벽의 보강 및 설계적용 사례 연구)

  • Hong, Kikwon;Han, Jung-Geun;Lee, Kwang-Wu;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.161-167
    • /
    • 2014
  • This paper describes reinforcement method of reinforced earth wall near the abutment. The excessive displacement of a case affected by reduction of bearing capacity due to macro-environment condition like a coast. That is, the front displacement of reinforced earth wall has been happening continuously due to strength reduction of foundation ground. The micro pile is applied to reinforcement method, in order to secure a bearing capacity and global slope stability of reinforced earth wall. The results of numerical analysis confirmed that reinforcement method based on micro pile can secure a stability of structure, while the reconstruction of reinforced earth wall is impossible by construction and macro-environment condition.

Structural Design and Construction of the Foundation of TOKYO SKYTREE

  • Konishi, Atsuo;Emura, Masaru
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.249-259
    • /
    • 2015
  • This paper introduces the structural design and construction method for the foundation of the TOKYO SKYTREE, a new digital broadcasting tower in Tokyo, which has a height of 634 meters. The surface layer of the ground is occupied by soft soil, thus the foundation of this tower is an SRC continuous underground wall pile, designed and developed to have horizontal rigidity and pull-out resistance. The structural integrity and construction method of the wall pile was verified with an on-site full scale pull-out test concluding a maximum load of 40,000 kN.

Analysis of Permeability Characteristic for Z type Steel Sheet Pile by Field Test (현장시험 시공을 통한 Z형 강널말뚝의 현장차수특성 분석)

  • 이용수;정하익;홍승서;이광범;김상진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.325-330
    • /
    • 2000
  • In general steel sheet pile use the containment system, vertical barrier systems for waste disposal and landfill purposes, roads in excavation which have a more permanent character or temporary structure. The sheet pile joints between section of the wall are sealed with a filter material arid the resistance to seepage is a function of the type of material employed. The aim of this paper is to review a characteristic of permeability for Z type sheet pile by field test in various condition.

  • PDF

Anti-Seismic Evaluation of Waterproofing Materials for Positive-Side wall and pile wall of Underground Concrete Structures (합벽구간 및 지하구조물 외벽에 사용되는 방수재료 내진 성능실험방법)

  • Oh, Kyu-hwan;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.210-211
    • /
    • 2021
  • This study introduces and demonstrates the application of an experimental regime for anti-seismic performance evaluation of waterproofing materials to used for concrete pile walls. Concrete pile walls are subject to high degree of seismic load, and the occurring stress can affect the waterproofing integrity of the structure, but there is currently no existing methodology or standard for evaluating this property of waterproofing materials. To propose and conduct this evaluation, a new testing apparatus was designed and manufactured intended to be able to test an installed waterproofing material's seismic resistance performance.

  • PDF

An Experimental Study on Structural Capacity of Joint Between Composite PHC Wall Pile and Bottom Slab with CT Shear Connector (CT형강 전단연결재가 적용된 합성형 PHC벽체파일-하부슬래브 연결부 성능에 관한 실험적 연구)

  • Mha, Ho Seong;Won, Jeong Hun;Lee, Jong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2013
  • This paper investigated the structural capacity of the CT shear connectors, which is a kind of the perfobond rib and functions as an anchor transferring the tension force in the joint between a composite PHC wall pile and a bottom slab. The direct pull-out test was performed for various specimens. From failure modes and load-displacement curves, it was found that transverse rebars should be placed to holes in a web to restrict pull-out failure of CT shear connectors. The results of additional tests for specimens with transverse rebars and various support lengths indicated that all specimens were failed by the tension failure of PHC pile before pull-out failure of CT shear connector and concrete pull-out failure. Thus, the CT shear connector could endure the tension force between the PHC wall pile and the bottom slab.

The Use of Reliability-based Approach to Design Anchored Sheet Pile Walls (신뢰성에 근거한 앵커 널말뚝의 설계방안 연구)

  • Kim, Hyung-Bae;Lee, Seoung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.95-104
    • /
    • 2002
  • In this study, a reliability-based design (RBD) procedure for determining design values fur anchored sheet pile wall is proposed considering overturning about the anchor point as the major failure mode. In this design procedure, the depth of embedment of the sheet pile wall is logically chosen in accordance with degrees of uncertainties of design input parameters using approximate probabilistic computation methods. These methods have been successfully used in the geotechnical engineering requiring neither understandings of complex probabilistic theories nor efforts to prepare more data. It was investigated that the design results by the proposed method were compatible with those by commonly used deterministic design methods. Additionally, in an effort to investigate the effects of changes in the degree of uncertainties of major design variables on the design results of the sheet pile wall, a sensitivity analysis was peformed.

Applicability of Similitude Laws for 1-g Shaking Table Tests (1-g 진동대 모형시험을 위한 상사법칙의 적용성 평가)

  • 황재익;김성렬;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.141-150
    • /
    • 2004
  • Shaking table model tests were performed to reproduce the dynamic behavior of a gravity quay wall and a pile-supported wharf which were damaged during the Kobe earthquake in 1995. The results of the model tests were compared with field measurements and with the results of previous model tests. The displacements of the model quay wall were only one third of that of the prototype, whereas the deformation state of the model was similar to that of the prototype. The displacements of the model pile-supported wharf were about two thirds of that of the prototype and the locations of the maximum moments at the model pile were similar to the buckling locations of the prototype piles.

A field investigation on an expansive soil slope supported by a sheet-pile retaining structure

  • Zhen Zhang;Yu-Liang Lin;Hong-Ri Zhang;Bin He;Guo-Lin Yang;Yong-Fu Xu
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.315-324
    • /
    • 2024
  • An expansive soil in 4970 special railway line in Dangyang City, China, has encountered a series of landslides due to the expansion characteristics of expansive soil over the past 50 years. Thereafter, a sheet-pile retaining structure was adopted to fortify the expansive soil slope after a comprehensive discussion. In order to evaluate the efficacy of engineering measure of sheet-pile retaining structure, the field test was carried out to investigate the lateral pressure and pile bending moment subjected to construction and service conditions, and the local daily rainfall was also recorded. It took more than 500 days to carry out the field investigation, and the general change laws of lateral pressure and pile bending moment versus local daily rainfall were obtained. The results show that the effect of rainfall on the moisture content of backfill behind the wall decreases with depth. The performance of sheet-pile retaining structure is sensitive to the intensity of rainfall. The arching effect is reduced significantly by employing a series of sheet behind piles. The lateral pressure behind the sheet exhibits a single-peak distribution. The turning point of the horizontal swelling pressure distribution is correlated with the self-weight pressure distribution of soil and the variation of soil moisture content. The measured pile bending moment is approximately 44% of the ultimate pile capacity, which indicates that the sheet-pile retaining structure is in a stable service condition with enough safety reserve.

Lateral Wall Movements and Apparent Earth Pressures for In-situ Walls during Deep Excavations in Multi-Layered Grounds with Rocks (암반을 포함한 다층토 지반에서의 깊은 굴착시 흙막이벽체의 수평변위 및 겉보기토압)

  • 유충식;김연정
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the measured performance of in-situ walls using the measured data collected from various deep excavation sites in urban area. A variety of in-situ wall systems from 57 sites were considered, including H-pile walls, soil cement walls, cast-in-place pile walls, and diaphram walls. The examination included lateral wall movements as well as apparent earth pressure distributions. The measured data were thoroughly analyzed to investigate the effects of various components of in-situ wall system, such as types of wall and supporting system, on the lateral wall movement as well as on the apparent earth pressure distribution. The results wee then compared with the current design/analysis methods, and information is presented in chart formes to provide tools that can be used for design and analysis. Using the measured data, a semi-empirical equation for predicting deep excavation induced maximum lateral wall movement is suggested.

  • PDF

A Study on Estimation of End Bearing Capacity of a PHC-W Pile in Building Underground Additional Wall Using the PHC-W Earth Retaining Wall (PHC-W 흙막이 벽체를 이용한 건축물 지하증설벽체에서 PHC-W말뚝의 선단지지력 산정에 관한 연구)

  • Kim, Chea Min;Yun, Daehee;Lee, Chang Uk;Johannes, Jeanette Odelia;Kim, Sung Su;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.5-16
    • /
    • 2019
  • With the recent concentration of urban populations, the constructions of large structures are increasing, along with the development of foundations for large structures. PHC Piles have been used in many structures ever since Japanese introduced the technology at the end of the 20th century. Recently, many studies on the use of the PHC Pile have been carried out as earth retaining using the merits of PHC piles. In this study, static axial compression tests were conducted on the PHC-W piles constructed as column-type in building underground additional wall using the PHC-W earth retaining wall. The end bearing capacity of pile was calculated using the axial load transfer measurement that was obtained from the static axial compression test result. Since end bearing capacity of the PHC-W pile embedded in weathered rock showed a different behaviour from the conventional PHC pile, the calculation method of end bearing capacity for column-type PHC-W piles would be proposed. The unit ultimate end bearing equation proposed for single and group PHC-W pile embedded in weathered rock is $q_b=13.3N_b$ and $q_b=6.8N_b$.