• Title/Summary/Keyword: Wall conditioning

Search Result 402, Processing Time 0.025 seconds

A Numerical Analysis on the Effect of Parameters for the Flow Rate through the Tunnel with Jet Fan Ventilating System (제트 홴 방식 환기시스템을 사용하는 터널의 환기량에 영향을 주는 인자에 대한 수치해석 검토)

  • 김사량;김기정;허남건;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.567-574
    • /
    • 2002
  • In the present study, ventilation flow rates and pressure rises through a road tunnel are simulated numerically using CFD with the various conditions such as roughness height, swirl angle of jet fan, entrance and exit effect and hub to tip ratio. By using a modified wall function, friction factor can be predicted under 10% of error with respect to the Moody chart for the circular pipe flow and 15%, for the present tunnel. For more precise design, the effects of the swirl angle and hub to tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan are necessary to be considered.

Numerical Analysis on the Effect of Parameters that Affect the Flow Rate through the Tunnel with Jet Fan Ventilation System

  • Kim, Sa-Ryang;Hur, Nahmkeon;Kim, Young-Il;Kim, Ki-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.178-187
    • /
    • 2003
  • In this study, ventilation flow rate and pressure rise through a tunnel are simulated numerically using computational fluid dynamics (CFD) for various conditions such as roughness height of the surface of tunnel, swirl angle and hub/tip ratio of jet fan, and entrance and exit effects. By using a modified wall function, friction factor can be predicted with respect to the Moody chart within 10% of error for the circular pipe flow and 15% for the present tunnel. For more accurate design, the effect of the swirl angle and hub/tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan needs to be considered.

Study of Thermal Stratification into Leaking Flow in the Nuclear Power Plant, Emergency Core Coolant System (원자로 비상 냉각재 누설에 의한 열성층의 비정상 특성에 관한 연구)

  • Han Seong-Min;Choi Yong-Don;Park Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.202-210
    • /
    • 2006
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thormal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, when the turbulence penetration occurs in the branch pipe, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine.

A Calculation Method on Heat Flux from Ondol Floor Surface (온돌면(溫突面)의 방열량(放熱量) 산정방법(算定方法)에 관한 연구(硏究))

  • Sohn, Jang Yeul;Ahn, Byung Wook;Pang, Seung Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.173-181
    • /
    • 1989
  • Until recently there was a lack of reliable performance data for the design and operation of Ondol heating systems. This paper presents a calculation method on heat flux from Ondol floor surface. Total heat flux from floor consists of radiation and convection component. In order to analyse the characteristics of both radiation and convection heat flux, each surface temperature is measured and several temperatures near each wall are measured vertically and horizontally in a practical Ondol heating space. Radiation heat flux is calculated and analysed by Gebhart's Absorption Factor Method with the consideration of instantaneous radiant exchanges. Convection heat output is derived from the vertical temperature profiles near floor. The vertical temperature profiles could be expressed by nonlinear regression equation models and convection coefficients could be estimated by the equations. As a result, radiation, convection and total heat flux are suggested by the expression of difference between floor surface and room air temperature.

  • PDF

Heat Transfer above Liquid Helium Surface in Cryostat (극저온용기 액체헬륨 표면 상부의 열전달 특성)

  • Choi, Yeon-Suk;Kim, Dong-Lak;Shin, Dong-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.147-152
    • /
    • 2011
  • The cryogenic cooling load from the top plate of cryostat to liquid helium surface, including wall conduction, thermal radiation and current leads, is investigated in a closed cryostat system for superconducting magnet. In general methods of load estimation, individual load is calculated separately, however they are actually coupled each other because of natural convection of helium vapor. Using relevant heat transfer analysis, we calculate cryogenic load with taking into account the effect of natural convection. Cryogenic load is under-estimated approximately 1% when the natural convection is ignored. The difference between actual cooling load and cooling load by individual calculation increases with supplying current.

Performance of a Reciprocating Compressor Equipped with Auxiliary Port (보조 흡입구가 장착된 왕복동 압축기의 성능 분석)

  • Lee, Yong-Ho;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.637-644
    • /
    • 2008
  • Auxiliary port which had been known to be used to reduce the expansion loss of a refrigeration system was applied to a R134a reciprocating compressor in a household refrigerator cycle with an intention of improving the compressor performance. Effects of the auxiliary port on the compressor performance was investigated by a computer simulation program. When a simple hole was made on the side wall of the cylinder as an auxiliary port and surrounding gas inside the compressor shell was assumed to be drawn into the cylinder through the hole, maximum COP improvement of 1.66% was obtained. With auxiliary port equipped with a plate type of check valve, maximum COP was raised to be 1.99%. COP improvement was more distinctive with decreasing the discharge pressure; COP improvement was 5% with discharge pressure of 7 bar.

Condensing Heat Transfer Characteristics of Propylene Refrigerant (프로필렌 냉매의 응축열전달 특성에 관한 실험적 연구)

  • 이호생;김재돌;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.639-644
    • /
    • 2004
  • This paper deals with the heat transfer characteristics of R-1270 (Propylene), R-600a (Iso-butane) and R-290 (Propane) as an environment friendly refrigerant and R-22 for condensing. The experimental apparatus has been set-up as a conventional vapor compression type heat pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70 mm with 1.32 mm wall thickness is used for this investigation. The test results showed that the local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than that of R-22. The average condensing heat transfer coefficient was obtained with the maximum value in R-1270 and the minimum one in R-22. Comparing the heat transfer coefficient of experimental results with that of other correlations, the presented results had a good agreement with the Cavallini-Zecchin's correlation. It reveals that the natural refrigerants can be used as substitute for R-22.

A Numerical Study on the Laminar Flow Field and Heat Transfer Coefficient Distribution for Supercritical Water in a Tube

  • Lee Sang-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.206-216
    • /
    • 2005
  • Numerical analysis has been carried out to investigate laminar convective heat transfer at zero gravity in a tube for supercritical water near the thermodynamic critical point. Fluid flow and heat transfer are strongly coupled due to large variation of thermodynamic and transport properties such as density, specific heat, viscosity, and thermal conductivity near the critical point. Heat transfer characteristics in the developing region of the tube show transition behavior between liquid-like and gas-like phases with a peak in heat transfer coefficient distribution near the pseudo critical point. The peak of the heat transfer coefficient depends on pressure and wall heat flux rather than inlet temperature and Reynolds number. Results of the modeling provide convective heat transfer characteristics including velocity vectors, temperature, and the properties as well as the heat transfer coefficient. The effect of proximity on the critical point is considered and a heat transfer correlation is suggested for the peak of Nusselt number in the tube.

Heat Transfer Characteristics in Impinging Air Jet with Hybrid Rod (하이브리드 로드를 갖는 충돌공기제트의 열전달특성에 관한 연구)

  • 표창기;박상록;김동춘;금성민;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.277-283
    • /
    • 2000
  • The heat transfer characteristics for air jet vertically impinging on a flat plate which had a set of hybrid rod were investigated experimentally. The rod had a cross section made with a half of circular cross section and that of rectangular and was installed in front of the plate. The heating surface was given constant heat flux value of 1020 W/$m^2^{\circ]C$ and the problem parameters investigated were jet Reynolds number, nozzle-to-plate spacing and the rod size. The local and local average Nusselt number characteristics were found to be dependent on the rod size because the flow was disturbed by installing the rod. Higher convective heat transfer rate occurred in the whole plate as well as in the stagnation region.

  • PDF

An analysis of the Design heating load calculation in multi-family houses (공동주택 최대난방부하 계산법의 분석)

  • 조동우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Design load calculations which depend on the thermal characteristics of the building structure such as the wall, roof, and fenestration provide the basic data for selecting an HVAC system and its equipment. Most of domestic multi-family houses include a high thermal storage layer like massive concrete structure and a floor heating structure. This study is to compare the results of the design heating load between steady state and unsteady state calculation in order to comprehend the thermal storage effect in multi-family houses. The design heating load under the steady state calculation is estimated from 5.4% to 7.8% larger than that under the unsteady state in the typical floor of a multi-family house model. The design heating load considered the safety factors like a orientation and location factor also is 21.4% to 26.5% larger than that by the unsteady state calculation. So, the safety factors for use of the practicing engineer are analyzed as the main factor of a heating plant oversizing.

  • PDF