• Title/Summary/Keyword: Wall Strengthening

Search Result 104, Processing Time 0.021 seconds

Experimental study on RC frame structures strengthened by externally-anchored PC wall panels

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Zhang, Dichuan;Kim, Jong Ryeol
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.383-393
    • /
    • 2018
  • Infill wall strengthening method has been widely used for seismic strengthening of deteriorated reinforced concrete (RC) frame structures with non-seismic details. Although such infill wall method can ensure sufficient lateral strengths of RC frame structures deteriorated in seismic performances with a low constructional cost, it generally requires quite cumbersome construction works due to its complex connection details between an infill wall and existing RC frame. In this study, an advanced seismic strengthening method using externally-anchored precast wall panels (EPCW) was developed to overcome the disadvantage inherent in the existing infill wall strengthening method. A total of four RC frame specimens were carefully designed and fabricated. Cyclic loading tests were then conducted to examine seismic performances of RC frame specimens strengthened using the EPCW method. Two specimens were fully strengthened using stocky precast wall panels with different connection details while one specimen was strengthened only in column perimeter with slender precast wall panels. Test results showed that the strength, stiffness, and energy dissipation capacity of RC frame specimens strengthened by EPCWs were improved compared to control frame specimens without strengthening.

Development of Strengthening Method and Safety Analysis of Ecological Block and Vegetation Bank Protection (식생블록옹벽의 구조적 안전성 해석과 보강설계기법 연구)

  • Oh, Byung-Hwan;Cho, In-Ho;Lee, Young-Saeng;Lee, Keun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.207-215
    • /
    • 2003
  • Developed is a new environment-friendly concrete-block retaining wall system. The conventional analysis methods are not directly applicable because the proposed concrete-block wall system is made of by interlocking the blocks with shear keys. Therefore, the shear analysis as well as stability analysis have been conducted to secure the safety of block-wall system. Overall slope stability analysis was also performed. An appropriate strengthening method was developed to ensure the safety when the block-wall system is relatively high. The method of analysis for strengthening the concrete-block wall system was also proposed. The proposed environment-friendly concrete block retaining wall system shows reasonable safety and can be a good construction method for retaining walls and river bank walls.

Strengthening of hollow brick infill walls with perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Seydanlioglu, Mahmut
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.181-199
    • /
    • 2014
  • The infill walls, whose contribution to the earthquake resistance of a structure is generally ignored due to their limited lateral rigidities, constitute a part of the lateral load bearing system of an RC frame structure. A common method for improving the earthquake behavior of RC frame structures is increasing the contribution of the infill walls to the overall lateral rigidity by strengthening them through different techniques. The present study investigates the influence of externally bonded perforated steel plates on the load capacities, rigidities, and ductilities of hollow brick infill walls. For this purpose, a reference (unstrengthened) and twelve strengthened specimens were subjected to monotonic diagonal compression. The experiments indicated that the spacing of the bolts, connecting the plates to the wall, have a more profound effect on the behavior of a brick wall compared to the thickness of the strengthening plates. Furthermore, an increase in the plate thickness was shown to result in a considerable improvement in the behavior of the wall only if the plates are connected to the wall with closely-spaced bolts. This strengthening technique was found to increase the energy absorption capacities of the walls between 4 and 14 times the capacity of the reference wall. The strengthened walls reached ultimate loads 30-160% greater than the reference wall and all strengthened walls remained intact till the end of the test.

Seismic capacity of brick masonry walls externally bonded GFRP under in-plane loading

  • Wang, Quanfeng;Chai, Zhenling;Wang, Lingyun
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.413-431
    • /
    • 2014
  • By carrying out the experiment of eight pieces of brick masonry walls with pilaster strengthened by Glass fiber reinforced polymer (GFRP) and one piece of normal masonry wall with pilaster under low reversed cyclic loading, the failure characteristic of every wall is explained; Seismic performances such as hysteresis, stiffness and its degeneration, deformation, energy consumption and influence of some measures including strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor on reinforcement effects are studied. The test results showed that strengthening modes have little influence on stiffness, stiffness degeneration and deformation of the wall, but it is another thing for energy consumption of the wall; The ultimate load, deformation and energy consumption of the walls reinforced by glass fiber sheets was increased remarkably, rigidity and its degeneration was slower; Seismic performance of the wall which considers strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor at the same time is better than under the other conditions.

Strengthening of deficient RC frames with high strength concrete panels: an experimental study

  • Baran, Mehmet;Susoy, Melih;Tankut, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.177-196
    • /
    • 2011
  • An economic, structurally effective and practically applicable strengthening technique was developed for reinforced concrete (RC) framed buildings. The idea of the technique is to convert the existing hollow brick infill wall into a load carrying system acting as a cast-in-place RC infill wall by bonding relatively thin high strength precast concrete PC panels to the plastered hollow brick infill. For this purpose, a total of eight one-third scale, one bay, one story frames were tested under reversed-cyclic lateral loads. Test frames were designed and constructed with common deficiencies observed in practice. Four different panel types were used for strengthening. Test results showed that both strength and stiffness of the frames were significantly improved by the introduction of PC panels. Experimental results were compared with the analytical approaches suggested by the authors.

Experimental investigation of retrofitted shear walls reinforced with welded wire mesh fabric

  • Yuksel, Suleyman B.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.133-141
    • /
    • 2019
  • The aim of the present paper is to present the cyclic behavior of strengthened reinforced concrete shear wall test specimen, which was reinforced with cold drawn welded wire mesh fabric. Two reinforced concrete shear wall specimens have been tested in the present study. The walls were tested under reversed cyclic loading with loading applied near the tip of the walls. The control wall is tested in its original state to serve as a baseline for the evaluation of the repair and strengthening techniques. The two test specimens include a control wall and a repaired wall. The control wall test specimen was designed and detailed to simulate non-ductile reinforced concrete shear walls that do not meet the modern seismic provisions. The response of the original wall was associated with the brittle failure. The control shear wall was repaired by addition of the reinforcements and the concrete and then it was reloaded. The effectiveness of the repair technique was investigated. Test results indicate that there can be a near full restoration of the walls' strength. The data from this test, augmenting other data available in the literature, will be useful in calibrating improved analytical methods as they are developed.

Evaluation of Seismic Strengthening Approach at the Boundary Elements of RC Walls using Prestressed Wire Rope Units (프리스트레스트 와이어로프를 사용한 RC 벽체의 단부 경계요소 내진보강 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • The present study examined the reversal cyclic flexural behavior of walls with jacket section approach for seismic strengthening through forming the boundary elements at both ends of the wall. The prestressed wire ropes were used for the lateral reinforcement to confine the boundary element of the wall. The main parameter investigated was the height of the jacket section for strengthening. The limit height of the strengthening jacket section was determined by comparing the moment distributions between the existing and strengthened walls. Test results showed that the examined jacket section approach was significantly effective in enhancing the flexural resistance of walls, indicating 46% higher stiffness at peak strength and 210% greater work damage indicator, compared with the flexural performance of the unstrengthened wall. The ductility of the strengthened walls was insignificantly affected by the height of the jacket section when the height is greater than twice the wall length. The flexural capacity of the strengthened walls was 22% higher than the predictions obtained using the equivalent stress block specified in ACI 318-14.

Evaluation of seismic strengthening techniques for non-ductile soft-story RC frame

  • Karki, Prajwol;Oinam, Romanbabu M.;Sahoo, Dipti Ranjan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.423-435
    • /
    • 2020
  • Open ground story (OGS) reinforced concrete (RC) buildings are vulnerable to the complete collapse or severe damages under seismic actions. This study investigates the effectiveness of four different strengthening techniques representing the local and global modifications to improve the seismic performance of a non-ductile RC OGS frame. Steel caging and concrete jacketing methods of column strengthening are considered as the local modification techniques, whereas steel bracing and RC shear wall systems are selected as the global strengthening techniques in this study. Performance-based plastic design (PBPD) approach relying on energy-balance concept has been adopted to determine the required design force demand on the strengthening elements. Nonlinear static and dynamic analyses are carried out on the numerical models of study frames to assess the effectiveness of selected strengthening techniques in improving the seismic performance of OGS frame.. Strengthening techniques based on steel braces and RC shear wall significantly reduced the peak interstory drift response of the OGS frame. However, the peak floor acceleration of these strengthened frames is amplified by more than 2.5 times as compared to that of unstrengthened frame. Steel caging technique of column strengthening resulted in a reasonable reduction in the peak interstory drift response without substantial amplification in peak floor acceleration of the OSG frame.

Experimental Study on RC Frame Structures with Non-Seismic Details Strengthened by Externally-Anchored Precast Wall-Panel Method (EPWM) (외부 앵커압착형 프리캐스트 벽체로 보강된 비내진 상세를 갖는 철근콘크리트 골조에 대한 실험적 연구)

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Kwon, Yong-Keun;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • The infill-wall strengthening method has been widely used for the seismic performance enhancement of the conventional reinforced concrete (RC) frame structures with non-seismic detail, which is one of the promising techniques to secure the high resisting capacity against lateral forces induced by earthquake. During the application of the infill-wall strengthening method, however, it often restricts the use of the structure. In addition, it is difficult to cast the connection part between the wall and the frame, and also difficult to ensure the shear resistance performances along the connection. In this study, an advanced strengthening method using the externally-anchored precast wall-panel (EPCW) was proposed to overcome the disadvantages of the conventional infill-wall strengthening method. The one-third scaled four RC frame specimens were fabricated, and the cyclic loading tests were conducted to verify the EPCW strengthening method. The test results showed that the strength, lateral stiffness, energy dissipation capacity of the RC frame structures strengthened by the proposed EPCW method were significantly improved compared to the control test specimen.

A study on out-of-plane strengthening of masonry-infilled wall (조적채움벽의 면외보강에 관한 연구)

  • Jang, Hye-Sook;Eun, Hee-Chang
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • Fiber-reinforced polymer reinforcement or polyurea reinforcement techniques are applied to strengthen unreinforced masonry walls (UMWs). The out-of-plane reinforcing effect of sprayed glass fiber-reinforced polyurea (GFRPU), which is a composite elastomer made of polyurea and milled glass fibers on UMW, is experimentally verified. The out-of-plane strengths and ductile behaviors based on various coating shapes are compared in this study. An empirical formula to describe the degree of reinforcement on the out-of-plane strength of the UMW is derived based on the experimental results. It is reported that the peak load-carrying capacity, ductility, and energy absorption capacity gradually improve with an increase in the strengthening degree or area. Compared with the existing masonry wall reinforcement method, the GFRPU technique is a construction method that can help improve the safety performance along with ease of construction and economic efficiency.