• 제목/요약/키워드: Wall Jet

검색결과 361건 처리시간 0.039초

A Numerical Study on the Effects of Drug Ejection Velocity on Endovascular Thrombolysis

  • Jeong Woo Won;Rhee Kyehan
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권3호
    • /
    • pp.157-161
    • /
    • 2005
  • Direct injection of a fibrinolytic agent to the intraarterial thrombosis may increase the effectiveness of thrombolysis by enhancing the permeation of thrombolytic agents into the blood clot. Permeation of fibrinolytic agents into a clot is influenced by the surface pressure, which is determined by the injection velocity of fibrinolytic agents. In order to calculate the pressure distribution on the clot surface for different jet velocities (1, 3, 5 m/sec) and nozzle arrangements (1, 9, 17 nozzles), computational fluid dynamic methods were used. Thrombolysis of a clot was mathematically modeled based on the pressure and lysis front velocity relationship. Direct injection of a thrombolytic agent increased the speed of thrombolysis significantly and the effectiveness was increased as the ejecting velocity increased. The nine nozzles model showed about $20\%$ increase of the lysed volume, and the one and seventeen nozzles models did not show significant differences. The wall shear stress decreased as the number of nozzles increased, and the wall shear stress in most vessel wall was lower than 25 Pa. The results implied that thrombolysis could be accelerated by direct injection of a drug with the moderate velocity without damaging the blood vessel wall.

충돌로 인해 분산된 2상 제트스팀의 재부착 현상과 국부 감육 상관관계 규명 및 설계개선에 관한 연구 (Design Modification and Correlation Verification between Reattachment Flow of Dispersed Jet and Local Thinning of Feedwater Heater)

  • 김형준;김경훈;황경모
    • 설비공학논문집
    • /
    • 제21권9호
    • /
    • pp.483-495
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line-inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

풍동시험에서 반응면을 이용한 내부 항력 및 벽면 효과의 효율적 보정방안 연구 (A Study on Effective Correction of Internal Drag and Wall Interference Using Response Surface in Wind Tunnel Test)

  • 김준모;이영빈
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.637-643
    • /
    • 2019
  • Wind tunnel testing for flow-through model is necessary for performance prediction of an aircraft with air-breathing jet engine. Internal drag correction and wall correction are performed to acquire preciser wind tunnel test data. Many test runs are generally required to correct internal drag and wall interference in wind tunnel test. In this study we investigated more effective correction schemes using the response surface method. Even though the number of tests required for these schemes was much smaller than that for conventional methods, the differences between corrections using these schemes and conventional methods were similar level with the uncertainty of measurement except for the data near the boundaries.

표면조도를 가지는 오목한 면에 충돌하는 원형제트에 의한 열전달 측정 (Heat Transfer Measurement by a Round Jet Impinging on a Rib-Roughened Concave Surface)

  • 이대희;원세열;이준식
    • 대한기계학회논문집B
    • /
    • 제23권6호
    • /
    • pp.734-743
    • /
    • 1999
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the concave surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 4 to 10, the dimensionless surface curvature (d/D) 0.056, and the rib type (height ($d_1$) 0.2 cm, pitch (p) from 1.2 to 3.2 cm). It was founded that only when $L/d{\geq}6$, the average Nusselt numbers on the concave surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by the effect of rib attached to the wall surface. It was realized that the rib attached to the concave surface may no longer enhance the heat transfer rate or even lowers it depending on the rib type and flow conditions. In addition, the results by the steady-state method using the gold-film Intrex were in good agreement with those by the transient shroud method.

최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구 (A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration)

  • 강호근;김유택;이영호
    • 대한조선학회논문집
    • /
    • 제34권4호
    • /
    • pp.42-52
    • /
    • 1997
  • 수중램제트(underwater ram-jet)는 램흡입부(ram intake), 혼합실(mixing chamber) 및 노즐(nozzle)로 구성되어 있으며, 램흡입부로 유입된 작동유체는 압력이 증가되며 이 증압된 작동유체에 혼합실로부터 고압공기를 분사하여 기 액이상류를 형성하여 노즐을 통과하면서 대기압까지 팽창을 하여 작동유체를 고속으로 가속시켜 노즐출구로부터 추력을 얻는 방식으로 차세대 초고속 선박추진장치이다. 본 연구에서는 80노트를 낼 수 있는 선내관통형(buried type vessel) 램제트의 최적 노즐형상데이터를 이용하여 제반변수(벽마찰계수, 가스속도, 기포반경, 대기온도, 질량유량비, 디퓨저면적비, 작동유체의 속도구배)의 변화가 추진특성에 미치는 영향을 파악하였다.

  • PDF

압축기용 라비린스 실의 동특성 해석 (Rotordynamic Analysis of Compressor Labyrinth Seals)

  • 하태웅;이안성
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.849-855
    • /
    • 1998
  • An analysis of lateral hydrodynamic forces of compressor labyrinth seals is presented. Basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculaton of wall shear stresses and recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for a small motion about the centered position by expansion in the eccentricity ratio. Integraton of the resultant first-order pressure distribution over the seal defines the rotordynamic coefficients. As an application a rotordynamic analysis of the balance drum labyrinth seal found in an ethylene regrigeration copmressor is carried out. The rotordynamic characteristic results of the labyrinth seal are presented and compared with other types of seals, honeycomb seal and smooth seal.

  • PDF

희박연소를 위한 혼합기의 성층급기와 유동에 관한 연구 (A Study on the Effects of Induced Mixture Flows and the Stratified Charge for a Lean Burn)

  • 전대수;이태원;윤수한;하종률
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 2000
  • In the present study, the IDI-type constant volume chamber, which utilizes the indirect injection stratified charge method, is used to solve several problems including misfires and cycle-variations caused by unstable initial ignitions. A subchamber has been used to make an ignitable mixture under the low mean equivalence ratio. After burned in the subchamber, the flame jet getting through the passage hode enters the main chamber and burns the lean charge. There are many factors which affect the combustion characteristics of the indirect injection stratified engine. The passage hole angle is the most important since it determines the direction of flame flows into the main chamber. In the present study, we measured the combustion pressure, and the wall temperature, and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on passage hole angle and the equivalence ratio.

  • PDF

잉크젯 프린팅에 의한 단일벽 탄소나노튜브의 패터닝 (Patterning of Single-wall Carbon Nanotube using Ink-jet Printing)

  • 송진원;윤여환;한창수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.236-237
    • /
    • 2007
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as 34${\mu}m$. In thisrepeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about $\pm$5% deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.

  • PDF

압축기용 라비린스 실의 동특성 해석 (Rotordynamic Analysis for Labyrinth Seals Used in Compressors)

  • 하태웅;이안성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.138-144
    • /
    • 1997
  • The analysis of lateral hydrodynamic forces from the compressor labyrinth seals is presented. The basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculation of the wall shear stresses and the recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the labyrinth seal. The rotordynamic analysis for the balance drum labyrinth seal of an ethylene refrigeration compressor is carried out. The results of rotordynamic characteristic of the labyrinth seal and comparisons with other types of seal, honeycomb seal and smooth seal, are presented.

  • PDF

Investigations of countermeasures used to mitigate tunnel deformations due to adjacent basement excavation in soft clays

  • Jinhuo Zheng;Minglong Shen;Shifang Tu;Zhibo Chen;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • 제36권6호
    • /
    • pp.563-573
    • /
    • 2024
  • In this study, various countermeasures used to mitigate tunnel deformations due to nearby multi-propped basement excavation in soft clay are explored by three-dimensional numerical analyses. Field measurements are used to calibrate the numerical model and model parameters. Since concrete slabs can constrain soil and retaining wall movements, tunnel movements reach the maximum value when soils are excavated to the formation level of basement. Deformation shapes of an existing tunnel due to adjacent basement excavation are greatly affected by relative position between tunnel and basement. When the tunnel is located above or far below the formation level of basement, it elongates downward-toward or upward-toward the basement, respectively. It is found that tunnel movements concentrate in a triangular zone with a width of 2 He (i.e., final excavation depth) and a depth of 1 D (i.e., tunnel diameter) above or 1 D below the formation level of basement. By increasing retaining wall thickness from 0.4 m to 0.9 m, tunnel movements decrease by up to 56.7%. Moreover, tunnel movements are reduced by up to 80.7% and 61.3%, respectively, when the entire depth and width of soil within basement are reinforced. Installation of isolation wall can greatly reduce tunnel movements due to adjacent basement excavation, especially for tunnel with a shallow burial depth. The effectiveness of isolation wall to reduce tunnel movement is negligible unless the wall reaches the level of tunnel invert.