• Title/Summary/Keyword: Wall Fire

Search Result 356, Processing Time 0.028 seconds

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Damper Locationfor Uniform Air Egress Velocity in the case of Two Fire Doors (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 2개 출입문이 존재할 경우 균일한 방연풍속을 얻기 위한 댐퍼 위치 선정방법)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • Vestibule pressurization system should produce uniform air egress velocity to prevent the intrusion of smoke into escape route when fire accidents occur inside a building and fire doors are open for evacuation of people. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where two doors are installed varying the location of a damper and louver angle. From simulations, we found that when the damper in the vestibule is located at the center of the wall opposite to two fire doors, the uniform air egress velocity can be obtained.

A Study on Fire Risk of Multi-family Apartment Houses Constructed with the Exterior of the EIFS (외단열시스템 외장재로 시공된 다세대 공동주택의 화재위험에 관한 연구)

  • Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.60-65
    • /
    • 2013
  • EIFS system has the merit of low construction cost and shortening of construction period by easy-to-construct. For such reasons as mentioned above, it has been using across the board such as residential building, school, officetel, building remodeling and so on. It, however, has a drawback of generating plenty of combustible gases from styrofoam which is main material of it. In this regard, measures to prevent losses of life from combustible gases are needed urgently as fires on residential buildings applied EIFS caused human casualties resulted from combustible gases. With respect to the above, this study will analyze the risk of fires on residential facilities, such as multi-family apartment houses, schools and other buildings, applied EIFS which is the most frequently used as material of exterior wall and suggest countermeasure of it.

Experiments of Egress Behavior When Subway Car Stops on Railroad (지하철 차량 선로 정차 시 피난 행동에 관한 실험)

  • Kim, Jong-Hoon;Kim, Woon-Hyung;Lee, Duck-Hee;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • When the subway car stop on track, passengers have to overcome a height of 1.2 m from floor level of the subway car to the level of track for evacuation. In this experiments, participates in the group of twenties or under ages were rapidly jumping down from the subway car. However, Most elderly group were not easy to overcome the height without help of others and some of them were fell and injured. In case of merging flows, the flow rate of the group of twenties was lower than the other cases. If fire occurred in the train and train stopped in the tunnel, it will be needed a lot of total evacuation time because of the heigh difference and wall effect from subway car to outside.

Numerical Study on The Effect of Bending Angle on Pressure Change in High Pressure Hose (고압 호스에서 굽힘의 각도가 압력 변화에 미치는 영향에 대한 수치해석적 연구)

  • Hong, Ki-Bea;Kim, Min-Seok;Ryou, Hong-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • Fire damage time in high-rise buildings and wildland fire increasing every year. The use of high-pressure fire pumps is required to effectively extinguish fires. Reflecting the curvature effect of the fire hose occurring at the actual fire fighting site, this study provides a database of pressure drop, discharge velocity and maximum discharge height through C FD numerical analysis and it can provide using standards for fire extinguishing. Two Reynolds numbers of 200000 and 400000 were numerically analyzed at 0° -180° bending with water of 25℃ as a working fluid in hoses with a diameter of 65mm, a length of 15m, and a radius of curvature of 130mm. Realizable k-ε turbulence model was used and standard wall function was used. The pressure drop increases as the bending angle increases, and the maximum value at 90° and then decreases. The increasing rate is greater than the decrease. The velocity of the secondary flow also decreases after having the maximum value at 90°. The decreasing rate is greater than the increase. The turbulent kinetic energy increases to 120° and decreases with the maximum value. Pressure drop, velocity of the secondary flow, and turbulence kinetic energy are measured larger in the second bending region than in the first bending region.

A Study on Fire Hazards in Multiple Compartments with Lightweight Partition Walls (경량칸막이 벽체를 통한 다중구획공간에서의 화재위험성에 관한 연구)

  • Park, Sang-Min;Choi, Su-Gil;Jin, Se-Young;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.14-21
    • /
    • 2020
  • This paper presents the study of a fire risk to the backside of two miniatures of ISO 9705 2/5 using a lightweight partition for indoor space division and reproduction of the ISO 9705 test. An SGP partition, stud partition, glass wool panel, urethane foam panel, sandwich panel, and glass partition were selected as the test specimens, which are frequently used in construction. According to the ISO 9705 test standard, stabilization was achieved using a measuring device that recorded data before the ignition of a burner and continued recording for 120 s thereafter. After ignition was achieved, the power was increased to 300 kW for 600 s and then reduced to 100 kW for 600 s. The specimens were subsequently observed for 180 s, and the fire risk to the backside and the fire pattern of the wall unit were analyzed. Owing to the amount of heat generated by the ignition source, the maximum temperature of the backside was observed to be 67.7 ℃ for the SGP partition, 55.1 ℃ for the stud partition, 52.4 ℃ for the glass wool panel, 727.4 ℃ for the sandwich panel, 561 ℃ for the urethane foam panel, and 630.5 ℃ for the glass partition. In the cases of the sandwich and urethane foam panels, the explosion of flammable gas occurred by virtue of fusion of the interior materials. The reinforced glass was fractured owing to the temperature difference between the heat- and nonheat-responsive parts. Ultimately, the fire risk to the nearby section room was deemed to be high.

Properties of Density and Thermal Conductivity according to Addition ratio of Vermiculite of Lightweight Composite Panel Core (경량복합패널 심재의 버미큘라이트 첨가율에 따른 밀도 및 열전도율 특성)

  • Sin, Jin-Hyun;Kim, Heon-Tae;Kim, Tae-Hyun;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.111-112
    • /
    • 2016
  • Lately, In case of domestic fire situation, Suffocation due to inflammables has shown higher than direct disaster of the fire among the statistics of death caused by disaster. According to study, Lightweight Hybrid Panel as using the inner or outer wall is made with Polysilicon of the inorganic material, PA and vermiculite, so we make progress to performance experiment and review the density, thermal conductivity properties.

  • PDF

Drag Reducton of Pipe Wall For Fluid Flow due to Injected Polymer Solution - III. Consideration of Entrance Region Flow of Drag Reducing Fluids- (고분자용액에 의한 유체수송관벽의 저항감소 -III. 저항감소유체의 입구흐름 영역에 대한 고찰-)

  • 김영보;유경옥
    • Fire Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.21-35
    • /
    • 1991
  • As a part of studies of drag reduction phenomenon, at the entrance flow region of abrupt contraction tube flowing water, dilute and concentrated drag reducing polymer solutions contraction losses are estimated experimentally. Futher more, entrance lengths are considered theoretically and are measured experimentally. In the present experiment, fluid temperature is fixed l$0^{\circ}C$ and flow rates are 3,000

  • PDF

Density and Strength Properties according to the Paper Ash addition ratio of the Lightweight Composite Panel Core Using the Blast Furnace Slag and Polysilicon Sludge (고로슬래그와 폴리실리콘 슬러지를 활용한 경량복합패널 심재의 제지애시 첨가율에 따른 밀도 및 강도특성)

  • Lim, Jeong-Geun;Lee, Ji-Hwan;Park, Hee-Gon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.152-153
    • /
    • 2015
  • Recently, solar energy generation is one of the fastest growing industries for eco-friendly energy. Every year, solar energy generation industry grows to 42% on average. However, polysilicon sludge is generated from processing of polysilicon but, there is nothing to handle that. Therefore, we need research to recycle polysilicon sludge. Also, improved fire resistance efficiency of wall is required according to reinforced fire safety standards due to many cases of big fires in our country. This study focuses on density and strength properties according to the addition ratio of paper Ash for the lightweight composite panel core with polysilicon sludge. As a result of the test, adding paper ash 9% has the best density and strength properties.

  • PDF

A Study on the Assessment of Thermal Performance of Plus50 Eco-building (Plus50 환경공생빌딩의 열성능 평가에 관한 연구)

  • Lee, Hong-Cheol;Hwang, In-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.155-160
    • /
    • 2007
  • This study describes thermal performance of Plus50 eco-building with new technology such as power window system, green wall, structure material, etc. The Plus50 eco-building is house experimental which is constructed by Korea Institute of Construction Technology. In order to estimate thermal performance of the building, TRNSYS program and Prebid, and its sub-modules are used. The results showed that maximum heating and cooling load in the building are calculated at 1st floor and 4th floor, respectively. And also energy saving of the building is calculated as over 30% compared to conventional apartment house.

  • PDF

A Study on the Regulation system factor for facilitating Open Housing;Focused on the system change on the Housing field (오픈 하우징을 촉진하는 제도적 요인 연구;주택의 제도변화를 중심으로)

  • Kim, Soo-Am;Lee, Sung-Ok;Lee, Bo-Ra;Hwang, Eun-Kyung;Lim, Seok-Ho
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.227-230
    • /
    • 2006
  • Recently, housing market & circumstances considering society change have changed dramatically. Such changes have affected system exchange of apartment housing greatly and promoted new housing system breaking with bearing wall structure. From this point of view, this study examined ultimate systematic items for promoting better housing system after extracting existing building regulation and housing regulation. This study only analyzed system change considering skeleton(support) with housing regulation, building regulation and fire service law. Consequently, apartment housing will intend residential open building breaking with existing bearing wall structure by promoting change of skeleton & infill system afterward.

  • PDF