• Title/Summary/Keyword: Wall Fire

Search Result 356, Processing Time 0.02 seconds

Study on the Conduction Heat Transfer Characteristics According to the Heating Temperature of Lightweight Panel Wall material (경량칸막이 벽체재료의 수열온도에 따른 전도 열전달 특성 연구)

  • Park, Sang-Min;Lee, Ho-Sung;Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • The paper relates to a study on the conduction heat transfer characteristics according to the heating temperature of lightweight panel wall material. Plywoods, marbles, heat resistant glasses, as well as general gypsum board and fire-proof gypsum board, which have been widely used for lightweight panel wall material, were selected as experiment samples, and heating temperatures were set as $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. Next, each of the heating temperatures were introduced on the bottom part of the wall material for 30 minutes, and analyses were made on the heat transfer characteristics to the backside part on the top part through conduction. As results of the experiment, the maximum backside temperatures were measured up to $190^{\circ}C$ for a general gypsum board, $198^{\circ}C$ for a fire-proof gypsum board, $189^{\circ}C$ for a plywood, $321^{\circ}C$ for a marble, and $418^{\circ}C$ for a heat resistant glass as heating temperatures were introduced maximum of $600^{\circ}C$. In addition, the maximum change rate of conduction heat transfer were measured up to 85 W for a general gypsum board, 95 W for a fire-proof gypsum board, 67 W for a plywood, 1686 W for a marble, and 3196 W for a heat resistant glass as the maximum heating temperatures were introduced up to $600^{\circ}C$. Also, carbonization characteristics of the wallpapers were measured to visually check the danger of conduction heat transfer, and the results showed that smokes were first generated on the attached wallpapers for the heating temperature $600^{\circ}C$, which were 1021 s for a general gypsum board, 978 s for a fire-proof gypsum board, 1395 s for a plywood, 167 s for a marble, and 20 s for a heat resistant glass, and that the first generation of carbonization were 1115 s for a general gypsum board, 1089 s for a fire-proof gypsum board, 1489 s for a plywood, 192 s for a marble, and 36 s for a heat resistant glass.

A Study on Improvement of Password Algorithm (패스워드 알고리즘의 개선에 관한 연구)

  • 김영수;박연식;임재홍
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.287-293
    • /
    • 1999
  • The first stage for computer security is password. If security of password is impotent even constructing of perfect fire-wall, fire-wall is not anything but a good-for-nothing. Because management of password is depend upon an end-user rather than a system-manager, carelessness of password management is an inevitable result. It is a reason that an end-user is actually not able to manage a high-difficulty-password. In this paper, algorithm of password is improved to be difficult of hacking, having a existing password input pattern for an end-user.

  • PDF

A Study on the Safety of Small LPG Storage Tanks at External Fires (외부화재시 LPG 소형저장탱크의 안전성에 관한 연구)

  • Yim, Ji-Pyo;Ma, Byung-Chol;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.64-72
    • /
    • 2015
  • The purpose of this study is to study the safety of a small LPG storage tank with a capacity less than 3 ton when it is exposed to an external fire. First, simulation studies were carried out using ASPEN Plus and PHAST to demonstrate that overpressurization in the tank can be relieved by discharging the LPG through an adequately sized safety valve, but the release may lead to the secondary risk of fire and explosion around the tank. Next, the temporal variations of the temperatures of the lading and tank wall were obtained using AFFTAC, which showed that the tank wall adjacent to the vapor space could be overheated in about 11 min to such a point that the weakened strength might cause a rupture of the tank and subsequent BLEVE. The consequences of the BLEVE were estimated using PHAST. Finally, several practical measures for preventing the hazards of overheating were suggested, including an anti-explosion device, sprinkling system, insulation, heat-proof coating, and enhanced safety factor for tank fabrication. The effectiveness of these measures were examined by simulations using AFFTAC and ASPEN Plus.

UPWARD FLAME SPREAD ON PRACTICAL WALL MATERIALS

  • Kim, Choong-Ik;Ellen G. Brehob;Anil K. Kulkarni
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.138-145
    • /
    • 1997
  • Models of upward flame spread have been attempted in the past, but in the current work an emphasis has been placed on developing a practical model that will be useful across a broad range of materials. Some of the important aspects of the model we: the addition of external radiation to simulate a wall that is a part of an enclosure fire and has flaming walls radiating to it, the use of a correlation for flame heat feedback distribution to the sample surface based on data available in the literature, and the use of an experimentally measured mass loss rate for the sample material, In this paper, the development of the numerical model is presented along with predictions of flame spread for three materials: hardboard, a relatively homogeneous wood-based material; plywood, which is made of laminated wood bonded by adhesives; and a composite material made of fiberglass matrix embedded in epoxy. Predictions are compared with measured data at several levels of external radiation for each material. For the materials tested, the model correctly predicts trends and does a reasonable job predicting flame heights. The need for thermal property data for practical materials, which would be appropriate for flame spread models, is indicated by this work.

  • PDF

The fire patterns of vinyl and rubber cords shorted by external flame (외부화염에 의해 단락된 비닐코드 및 고무코드의 화재 패턴)

  • Kim, Dong-Woo;Shong, Kil-Mok;Kim, Dong-Ook;Kim, Young-Seok;Choi, Chung-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1655-1657
    • /
    • 2004
  • The electrical fire frequently happens through carelessness of a vinyl and rubber cords such as a poor contact, a mechanical stress and so on. Electrical fire occupies the greater part(about 30%) of all fires in Korea. In this paper, we compared to the fire dispersive patterns of vinyl and rubber cords according to the external flame in the wall-model. The fire progress and dispersive patterns were measured by a high speed imaging system(HG-100K, REDLAKE, USA). From the results, short-circuit of the vinyl cords are easy to happen than the rubber cords by the external flame. The pattern of fire was progressed a flashover, scattering and disconnection. The fire progress on the vinyl cord is not observed because the ignition energy decreases. However, the fire was progressed continuously on the rubber cord.

  • PDF

Fire Performance of 3D Printing Wall in Simplified Heating Test (간이 내화시험에 의한 3D 프린팅 벽체의 내화 성능에 관한 연구)

  • Kibeom Ju;Byunghyun Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.11-17
    • /
    • 2023
  • In recent construction research, the focus has primarily been on developing 3D printers and construction-specific materials. 3D printing technology in construction is growing rapidly due to its potential benefits. However, there's a notable lack of research on the fire performance of 3D Printed Concrete (3DPC) walls. This study addresses this gap by investigating how 3DPC walls respond to controlled heating conditions in a simplified test. The research aims to provide crucial insights into the behavior of 3D-printed mortar composite walls when exposed to fire. The findings have the potential to enhance safety and reliability in 3D printing technology within the construction industry. Furthermore, it could contribute to improving the fire safety standards of architectural structures and expand the use of 3D printing in future construction projects.

Analysis of Smoke Behavior in Fire within Real-scale Theater Using FDS: Influences of Fire Curtain and Natural Smoke Vent Area (FDS를 이용한 실규모 공연장 무대 내 화재 시 연기 거동 분석: 방화막 및 자연배출구 면적의 영향)

  • Kim, Jae Han;Lee, Chi Young;Jeong, Lee Gyu;Kim, Duncan
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.7-14
    • /
    • 2018
  • This study investigated numerically the influences of fire curtain and natural smoke vent area on smoke movement in the stage fire of a theater using FDS (Fire Dynamics Simulator). The dimension of the theater stage was 31 m in width, 34 m in depth, and 32 m in height. The area ratios between the natural smoke vent and stage were approximately 10%, 8%, 5%, and 1%. The gap distance between the fire curtain and proscenium wall was 0.5 m. The fire curtain and natural smoke vent area were observed to affect significantly the behavior of smoke movement to the auditorium and the mass flow rates of inflow and outflow through the natural smoke vent and proscenium opening. In addition, under the same natural smoke vent area, the pressure in the stage with a fire curtain was lower than that without a fire curtain.

Numerical Study on the Thermophoretic Deposition Characteristics of Soot Particles for Wall Temperature of Burner and Surrounding Air Temperature in Combustion Duct (버너의 벽면온도와 연소실내 주위공기온도에 따른 매연입자의 열영동 부착 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui;Yoon, Doo-Ho;Yoon, Seok-Hun;Chung, Suk-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • The characteristics of soot deposition on the cold wall in laminar diffusion flames have been numerically analyzed with a two-dimension with the FDS (Fire Dynamics Simulator). In particular, the effects of surrounding air temperature and wall temperature have been discussed. The fuel for the flame is an ethylene ($C_2H_4$). The surrounding oxygen concentration is 35%. Surrounding air temperatures are 300K, 600K, 900K and 1200K. Wall temperatures are 300K, 600K and 1200K. The soot deposition length defined as the relative approach distance to the wall per a given axial distance is newly introduced as a parameter to evaluate the soot deposition tendency on the wall. The result shows that soot deposition length is increased with increasing the surrounding air temperatures and with decreasing the wall temperature. And the numerical results led to the conclusion that it is essential to consider the thermophoretic effect for understanding the soot deposition on the cold wall properly.

An experimental study on fire resistance of medical modular block

  • Kim, Hyung-Jun;Lee, Jae-Sung;Kim, Heung-Youl;Cho, Bong-Ho;Xi, Yunping;Kwon, Ki-Hyuck
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.103-130
    • /
    • 2013
  • Fire performance and fire safety of high-rise buildings have become major concerns after the disasters of World Trade Center in the U.S. in 2001 and Windsor tower in Spain in 2005. Performance based design (PBD) approaches have been considered as a better method for fire resistance design of structures because it is capable of incorporating test results of most recent fire resistance technologies. However, there is a difficulty to evaluate fireproof performance of large structures, which have multiple structural members such as columns, slabs, and walls. The difficulty is mainly due to the limitation in the testing equipment, such as size of furnace that can be used to carry out fire tests with existing criteria like ISO 834, BS 476, and KS F 2257. In the present research, a large scale calorie meter (10 MW) was used to conduct three full scale fire tests on medical modular blocks. Average fire load of 13.99 $kg/m^2$ was used in the first test. In the second test, the weighting coefficient of 3.5 (the fire load of 50 $kg/m^2$) was used to simulate the worst fire scenario. The flashover of the medical modular block occurred at 62 minutes in the first test and 12 minutes in the second test. The heat resistance capacity of the external wall, the temperatures and deformations of the structural members satisfied the requirements of fire resistance performance of 90 minutes burning period. The total heat loads and the heat values for each test are calculated by theoretical equations. The duration of burning was predicted. The predicted results were compared with the test results, and they agree quite well.

Investigation of Hydrodynamic Force in a Portable Water Storage Tank of Reentrant Bottom Shape using Nonlinear Peregrine Model (바닥면이 오목한 이동형 소방용수 저장탱크의 수직 벽면에서의 동수력 연구: 비선형 Peregrine 모델)

  • Park, Jinsoo;So, Soohyun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.61-65
    • /
    • 2019
  • In the present study, the hydrodynamic force affected by a lapping wave induced by supplied falling water acting on the vertical wall of a portable water storage tank was analyzed using a nonlinear Peregrine model. The lapping wave's maximum run-up amplitudes and the hydrodynamic forces in the wall of the tank measured by linear and nonlinear Peregrine's models were compared numerically. As a result, it was concluded that the linear model may underestimate the effects on the vertical wall; therefore, it is more appropriate to use a nonlinear Peregrine model. Furthermore, this result can contribute to the stable structural designs of portable water storage tanks.